Synthesis 2014; 46(18): 2383-2412
DOI: 10.1055/s-0034-1378662
review
© Georg Thieme Verlag Stuttgart · New York

Nitroalkynes: A Unique Class of Energetic Materials

G. Kenneth Windler*
a   College of Chemistry, University of California at Berkeley, Berkeley, CA 94720-1460, USA   Fax: +1(510)6435208   Email: kpcv@berkeley.edu
b   High Explosives Application Facility, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
,
Philip F. Pagoria
b   High Explosives Application Facility, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
,
K. Peter C. Vollhardt*
a   College of Chemistry, University of California at Berkeley, Berkeley, CA 94720-1460, USA   Fax: +1(510)6435208   Email: kpcv@berkeley.edu
› Author Affiliations
Further Information

Publication History

Received: 18 April 2014

Accepted: 23 April 2014

Publication Date:
26 August 2014 (online)


We dedicate this paper to the memory of Professor H. G. Viehe, whose work on hetero-substituted and electron-poor alkynes was the inspiration for this review and our own investigations in the area.

Abstract

Forty-five years after their first preparation, nitroalkynes retain interest for their unique chemical behavior and their potential as energetic materials. This review encompasses the physical and spectral properties, synthesis, reactivity, metal complexes, and theoretical studies of nitroalkynes not previously reviewed, and those prepared after 1973.

1 Introduction

2 Physical Properties of Nitroalkynes

3 Spectral Properties of Nitroalkynes

4 Syntheses of Nitroalkynes

4.1 Unsuccessful Attempts

4.1.1 Nitration

4.1.2 Elimination

4.1.3 Retrocycloaddition

4.2 Successful Strategies

4.2.1 Nitration

4.2.2 Elimination

4.2.3 Nucleophilic Displacement

4.2.4 From Triazoles

4.3 Attempts at the Synthesis of Dinitroacetylene

5 Reactions of Nitroalkynes

5.1 Thermal Decomposition

5.2 Nucleophilic Addition

5.3 Cycloaddition

6 Metal Complexes

7 Theoretical Studies

8 Conclusion

 
  • References

  • 1 New address: Dr. G. K. Windler, Los Alamos National Laboratory, MS C920, P. O. Box 1663, Los Alamos, NM 87545. Fax +1(505)6670500; E-mail: windler@lanl.gov.
  • 2 Jäger V, Viehe HG. Angew. Chem. Int. Ed. 1969; 8: 273
  • 3 Inamoto N, Masuda S. Chem. Lett. 1982; 1003
  • 4 Gordy W. Phys. Rev. 1946; 69: 604
  • 5 Zhang M.-X, Eaton PE, Steele I, Gilardi R. Synthesis 2002; 2013
  • 6 Verbruggen R. Mémoire de Licence . Université Catholique de Louvain; Belgium: 1970
  • 7 Jäger V In Houben-Weyl-Müller, Methoden der Organischen Chemie . 4th ed.; Vol. V/2a. Georg Thieme Verlag; Stuttgart: 1977: 109-111
  • 8 Schmitt RJ, Bedford CD. Synthesis 1986; 132
  • 9 Schmitt RJ, Bottaro JC, Malhotra R, Bedford CD. J. Org. Chem. 1987; 52: 2294
  • 10 Schmitt RJ, Bottaro JC. New Nitration Concepts, Government Report ADA187518. US Government; Washington (DC, USA): 1987
  • 11 Windler GK, Zhang M.-X, Zitterbart R, Pagoria PF, Vollhardt KP. C. Chem. Eur. J. 2012; 18: 6588
  • 12 Jäger V, Motte J, Viehe HG. Chimia 1975; 29: 516
  • 13 Jäger V. Ph.D. Thesis . University of Erlangen-Nürnberg; Germany: 1970
  • 14 Jäger V, Viehe HG. US Patent 3,626,013, 1971
  • 15 Motte J, Viehe HG. Chimia 1975; 29: 515
  • 16 Woltermann CJ. Ph.D. Thesis . Ohio State University; USA: 1996
  • 17 Kashin AN, Bumagin NA, Bessonova MP, Beletskaya IP, Reutov OA. J. Org. Chem. USSR (Engl. Transl.) 1980; 16: 1153
  • 18 Baum K, Bigelow SS, Tzeng D, Archibald TG. Chemistry of Polynitroethane Derivatives, Government Report ADA197044. US Government; Research Triangle Park (NC, USA): 1988
  • 19 Petrov AA, Zavgorodnii VS, Rall’ KB, Vil’davskaya AI, Bogoradovskii ET. Z. Obs. Khim. 1978; 48: 943 ; J. Gen. Chem. USSR (Engl. Transl.) 1978, 48, 865
  • 20 Petrov AA, Zavgorodnii VS, Rall’ KB, Vil’davskaya AI, Bogoradovskii ET. Russian Patent SU401136, 1, 1978
  • 21 Zhang, M.-X.; Eaton, P. E. unpublished work.
  • 22 Wieland H. Liebigs Ann. Chem. 1903; 328: 154
  • 23 Loevenich J, Koch J, Pucknat U. Ber. Dtsch. Chem. Ges. B 1930; 63: 636
  • 24 Loevenich J, Gerber H. Ber. Dtsch. Chem. Ges. B 1930; 63: 1707
  • 25 Novikov SS, Belikov VM, Dem’yanenko VF, Lapshina LV. Bull. Acad. Sci. USSR, Div. Chem. Sci. (Engl. Transl.) 1960; 9: 1200
  • 26 Derycke C, Jäger V, Putzeys JP, van Meersche M, Viehe HG. Angew. Chem. Int. Ed. 1973; 12: 406
  • 27 Rall’ KB, Vil’davskaya AI, Petrov AA. Russ. Chem. Rev. 1975; 44: 373
  • 28 Banert K In Science of Synthesis . Vol. 24. de Meijere A. Georg Thieme Verlag; Stuttgart: 2006: 1059
  • 29 Bottaro J, Schmitt R, Bedford C, Gilardi R, George C. J. Org. Chem. 1990; 55: 1916
  • 30 Kuznetsova OV, Egorochkin AN, Mushtina TG, Bogoradovskii ET. Russ. J. Gen. Chem. 2004; 74: 384
  • 31 Motte JC. Mémoire de Licence. Université Catholique de Louvain; Belgium: 1970
  • 32 Schmitt RJ, Krempp M, Bierbaum VM. Int. J. Mass Spectrom. Ion Proc. 1992; 117: 621
  • 33 Lin-Vien D. The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules. Academic Press; Boston: 1991
  • 34 Bellamy LJ. Advances in Infrared Group Frequencies . Vol. 2. Chapman & Hall; New York: 1980: 229-232
  • 35 Bellamy LJ. The Infrared Spectra of Complex Molecules . 3rd ed. Wiley; New York: 1975: 66-67
  • 36 Gross JH. Mass Spectrometry . Springer Verlag; Heidelberg: 2004: 247, 308-310
  • 37 Yamabe K, Yasutake A. Sasebo Kogyo Koto Senmon Gakko Kenkyu Hokoku 1979; 16: 63 : Chem. Abstr. 1980, 93, 185856
  • 38 Bovey FA. NMR Data Tables for Organic Compounds . Wiley; New York: 1967: 12, 29, 30, 32, 33, 36, 37, 54, 56-58, 60
  • 39 Becker ED. High Resolution NMR . Academic Press; San Diego: 1980: 192
  • 40 Harris RK. Nuclear Magnetic Resonance Spectroscopy (A Physicochemical View) . Longman Publishing Group; London: 1983: 130-137
  • 41 Happ B, Bartik T, Zucchi C, Rossi MC, Ghelfi F, Pályi G, Váradi G, Szalontai G, Horváth IT, Chiesi-Villa A, Guastini C. Organometallics 1995; 14: 809
  • 42 Zhang, M.-X. personal communication.
  • 43 Baschieri A. Gazz. Chim. Ital. 1901; 31: 461
  • 44 Quilico A, Simonetta M. Gazz. Chim. Ital. 1947; 77: 586
  • 45 Quilico A, Freri M. Gazz. Chim. Ital. 1946; 76: 3
  • 46 Quilico A, Panizzi L. Gazz. Chim. Ital. 1942; 72: 458
  • 47 Encyclopedia of Explosives and Related Items . Vol. 1; A67. Fedoroff BT. Picatinny Arsenal; Dover: 1960
  • 48 Clark HG, Plummer CW, Hoffman SA. US Patent 3,067,261, 1962
  • 49 Krauz C, Štěpánek J. Chem. Obzor. 1936; 11: 153 ; Chem. Abstr. 1937, 31, 30506
  • 50 Mager H. FR 1168541, 1958 ; Chem. Abstr. 1961, 55, 13014.
  • 51 Robson E, Tedder JM, Woodcock DJ. J. Chem. Soc. C 1968; 1324
  • 52 Gilchrist TL. Chem. Soc. Rev. 1983; 53
  • 53 Motte JC. Ph.D. Thesis . Université Catholique de Louvain; Belgium: 1974
  • 54 Woltermann CJ, Shechter H. Helv. Chim. Acta 2005; 88: 354
  • 55 Viehe HG, Merényi R, Oth JF. M, Valange P. Angew. Chem. Int. Ed. 1964; 3: 746
  • 56 Gais HJ, Hafner K, Neuenschwander M. Helv. Chim. Acta 1969; 52: 2641
  • 57 Janousek Z. Ph.D. Thesis . Université Catholique de Louvain; Belgium: 1972
  • 58 Dewar MJ. S. Dinitroacetylene and Related Compounds, Government Report ADA128954. US Government; Research Triangle Park (NC, USA): 1983
  • 59 Stang PJ. Russ. Chem. Bull. 1993; 42: 12
  • 60 Banert K, Arnold R, Hagedorn M, Thoss P, Auer AA. Angew. Chem. Int. Ed. 2012; 51: 7515
  • 61 Shiri M, Zolfigol MA, Kruger HG, Tanbakouchian Z. Tetrahedron 2010; 66: 9077
  • 62 Olah GA, Malhotra R, Narang SC. Nitration Methods and Mechanisms . VCH; Weinheim: 1989: 243
  • 63 Tani K, Lukin K, Eaton PE. J. Am. Chem. Soc. 1997; 119: 1476
  • 64 Ciaccio LL, Marcus RA. J. Am. Chem. Soc. 1962; 84: 1838
  • 65 Potkin VI, Petkevich SK, Kletskov AV, Dikusar EA, Zubenko YS, Zhukovskaya NA, Kazbanov VV, Pashkevich SG. Russ. J. Org. Chem. 2013; 49: 1523
  • 66 Siehl H.-U, Brixner S, Coletti C, Re N, Chiavarino B, Crestoni ME, De Petris A, Fornarini S. Int. J. Mass Spectrom. 2013; 334: 58 ; and references cited therein
  • 67 Derycke C. Ph.D. Thesis . Université Catholique de Louvain; Belgium: 1975
  • 68 Campbell CD, Rees CW. J. Chem. Soc. C 1969; 742
  • 69 Hart H, Ok D. Tetrahedron Lett. 1984; 25: 2073
  • 70 Venugopal M, Srinivasulu D, Shechter H. Synthesis of High-Energy 1,2,3,4-Tetrazine 1,3-Di-N-Oxides and Pentazine Poly-N-Oxides, Government Report ADA430332. US Government; Arlington (VA, USA): 2004
  • 71 Shechter H, Venugopal M, Srinivasulu D. Synthesis of 1,2,3,4-Tetrazines 1,2,3,4-Tetrazine 1,3-Di-N-Oxides Pentazole Derivatives Pentazine Poly-N-Oxides and Nitroacetylenes, Government Report ADA445136. US Government; Arlington (VA, USA): 2006
  • 72 Jäger, V. personal communication.
  • 73 Grundmann C, Mini V, Dean JM, Frommeld H. Liebigs Ann. Chem. 1965; 687: 191
  • 74 Guo B, Pasinszki T, Westwood NP. C, Bernath PF. J. Chem. Phys. 1995; 103: 3335
  • 75 Pasinszki T, Westwood NP. C. J. Am. Chem. Soc. 1995; 117: 8425
  • 76 Politzer P, Lane P, Sjoberg P, Grice ME, Shechter H. Struct. Chem. 1995; 6: 217
  • 77 Diels O, Alder K. Ber. Dtsch. Chem. Ges. B 1929; 62: 2337
  • 78 Weis CD. J. Org. Chem. 1962; 27: 3520
  • 79 Kwart H, King K. Chem. Rev. 1968; 68: 415
  • 80 Rickborn B. The Retro–Diels–Alder Reaction Part I: C–C Dienophiles. In Organic Reactions. Vol. 52. John Wiley & Sons; New York: 1998: 1-393
  • 81 Kotha S, Banerjee S. RSC Adv. 2013; 3: 7642
  • 82 Baum K, Griffin TS. J. Org. Chem. 1981; 46: 4811
  • 83 Griffin TS, Baum K. J. Org. Chem. 1980; 45: 2880
  • 84 Baum K, Tzeng D. J. Org. Chem. 1985; 50: 2736
  • 85 Baum, K. personal communication.
  • 86 Nitrocarbons . Nielsen AT. Wiley-VCH; Weinheim: 1995: 103-105
  • 87 Chung Y, Duerr BF, McKelvey TA, Nanjappan P, Czarnik AW. J. Org. Chem. 1989; 54: 1018
  • 88 McKelvey TA, Czarnik AW, Chung Y. Bull. Korean Chem. Soc. 1997; 18: 457
  • 89 Ghule VD, Srinivas D, Sarangapani R, Jadhav PM, Tewari SP. J. Mol. Model. 2012; 18: 3013
  • 90 Ravi P, Shee SK, Gore GM, Tewari SP, Sikder AK. Struct. Chem. 2011; 22: 661
  • 91 Nguyen NV, Baum K. Tetrahedron Lett. 1992; 33: 2949
  • 92 Baum K. Chemistry of Polynitroethane Derivatives, Government Report ADA249264. US Government; Research Triangle Park (NC, USA): 1992
  • 93 Baum K, Archibald TG, Tzeng D, Gilardi R, Flippen-Andersen JL, George C. J. Org. Chem. 1991; 56: 537
  • 94 Windler GK. Ph.D. Thesis . University of California at Berkeley; USA: 2011
  • 95 Glaser C. Ber. Dtsch. Chem. Ges. 1869; 2: 422
  • 96 Bai DH, Li CJ, Li J, Jia XS. Chin. J. Org. Chem. 2012; 32: 994
  • 97 Leterme JC. Mémoire de Licence . Université Catholique de Louvain; Belgium: 1971
  • 98 Derycke C. Mémoire de Licence . Université Catholique de Louvain; Belgium: 1971
  • 99 Fuji K, Node M, Nagasawa H, Naniwa Y, Taga T, Machida K, Snatzke G. J. Am. Chem. Soc. 1989; 111: 7921
  • 100 Kamimura A, Ono N. Synthesis 1988; 921
  • 101 Scholz D, Viehe HG. Chimia 1975; 29: 512
  • 102 Jäger V, Viehe HG. Angew. Chem. Int. Ed. 1970; 9: 795
  • 103 Battaglia A, Dondoni A. Tetrahedron Lett. 1970; 11: 1221
  • 104 Morrocchi S, Ricca A, Zanarotti A, Bianchi G, Gandolfi R, Grünanger P. Tetrahedron Lett. 1969; 10: 3329
  • 105 Christl M, Huisgen R. Tetrahedron Lett. 1968; 9: 5209 ; and references cited therein
  • 106 Himbert G, Faul D, Barz M. Z. Naturforsch. B 1991; 46: 955
  • 107 Dondoni A, Barbaro G. J. Chem. Soc., Perkin Trans. 2 1974; 1591
  • 108 Tanaka K, Masuda H, Mitsuhashi K. Bull. Chem. Soc. Jpn. 1984; 57: 2184
  • 109 Huisgen R In 1,3-Dipolar Cycloaddition Chemistry . Vol. 1. Padwa A. Wiley; New York: 1984: 1-176
  • 110 Denmark SE, Thorarensen A. Chem. Rev. 1996; 96: 137
  • 111 Politzer P, Lane P, Concha MC. J. Phys. Chem. A 2004; 108: 3493
  • 112 Boyer JH In Nitroazoles: Organic Nitro Chemistry . Vol. 1. Feuer H. VCH; Weinheim: 1986: 268
  • 113 Zhang M. X., Dave P. R., Yang K., Duddu R. G., Gelber N., Damavarapu R., Rao S.; A New Approach to Nitrotriazoles via 1,3-Dipolar Cycloaddition of Nitroacetylene to Azides; Abstracts of Papers, 232nd National Meeting, San Francisco, USA, Sept 10–14, 2006; American Chemical Society: Washington DC, 2006; ORGN-468.
  • 114 Lecocq A. Mémoire de Licence . Université Catholique de Louvain; Belgium: 1970
  • 115 Hübel W, Hoogzand C. Chem. Ber. 1960; 93: 103
  • 116 Giordano R, Sappa E, Predieri G. Inorg. Chim. Acta 1995; 228: 139
  • 117 Hoogzand C, Hübel W In Organic Syntheses via Metal Carbonyls . Vol. 1. Wender I, Pino P. Wiley; New York: 1968: 343-371
  • 118 Allen FH, Kennard O, Watson DG, Brammer L, Orpen AG, Taylor R. J. Chem. Soc., Perkin Trans. 2 1987; S1
  • 119 Fang Y, Liu L, Feng Y, Li X, Guo Q. J. Phys. Chem. A 2002; 106: 4669
  • 120 Tomonari M, Ookubo N, Takada T. Synth. Met. 1996; 81: 137
  • 121 Xia Y, Li Y, Li W. J. Organomet. Chem. 2008; 693: 3722
  • 122 Prall M, Wittkopp A, Fokin AA, Schreiner PR. J. Comput. Chem. 2001; 22: 1605
  • 123 Musch PW, Remenyi C, Helten H, Engels B. J. Am. Chem. Soc. 2002; 124: 1823
  • 124 Tomonari M, Ookubo N, Takada T. Chem. Phys. Lett. 1997; 266: 488
  • 125 Weimer M, Hieringer W, Sala FD, Görling A. Chem. Phys. 2005; 309: 77
  • 126 Giuffreda MG, Bruschi M, Lüthi HP. Chem. Eur. J. 2004; 10: 5671
  • 127 Kuznetsova OV, Egorochkin AN. Russ. Chem. Bull. 2006; 55: 624
  • 128 Zhang JX, Li ZS, Liu JY, Sun CC. J. Phys. Chem. A 2006; 110: 2527
  • 129 Szarek P, Sueda Y, Tachibana A. J. Chem. Phys. 2008; 129: 094102
  • 130 Buynoski MS, Okoroanyanwu U, Pangrle SK, Trispas NH. US Patent 8044387, 2011
  • 131 Politzer P, Bar-Adon R. J. Am. Chem. Soc. 1987; 109: 3529
  • 132 Sánchez-Sanz G, Trujillo C, Solimannejad M, Alkorta I, Elguero J. Phys. Chem. Chem. Phys. 2013; 15: 14310
  • 133 Prochnow E, Zuer AA, Banert K. J. Phys. Chem. A 2007; 111: 9945
  • 134 Mathews KY, Ball DW. J. Phys. Chem. A 2009; 113: 4855
  • 135 Rohini K, Swathi RS. J. Phys. Chem. A 2013; 117: 5794
  • 136 Jakt M, Johannissen L, Rzepa HS, Widdowson DA, Wilhelm R. J. Chem. Soc., Perkin Trans. 2 2002; 576
  • 137 Vianello R, Peran N, Maksić ZB. J. Phys. Chem. A 2006; 110: 12870
  • 138 Cooper PW. Explosives Engineering . Wiley-VCH; Weinheim: 1996: 131–132
  • 139 Dewar MJ. S, Ritchie JP, Alster J. J. Org. Chem. 1985; 50: 1031
  • 140 Golovin AV, Takhistov VV. J. Mol. Struct. 2004; 701: 57
  • 141 Rayne S, Forest K. Comp. Theo. Chem. 2011; 970: 15
  • 142 Góra RW, Blasiak B. J. Phys. Chem. A 2013; 117: 6859
  • 143 Vijayakumar S, Kolandaivel P. J. Mol. Struct.: THEOCHEM 2006; 770: 23
  • 144 Sayyed FB, Suresh CH, Gadre SR. J. Phys. Chem. A 2010; 114: 12330
  • 145 Li J. J. Phys. Chem. B 2010; 114: 2198
  • 146 Jursic BS. J. Mol. Struct.: THEOCHEM 1999; 459: 215
  • 147 Eaton PE, Zhang M, Gilardi R, Gelber N, Iyer S, Surapaneni R. Prop., Expl. & Pyro. 2002; 27: 1
  • 148 Politzer P, Lane P, Wiener JJ. M In Advances in Strained and Interesting Organic Molecules Suppl. 1, Carbocyclic and Heterocyclic Cage Compounds and Their Building Blocks. Laali KK. JAI Press; Stamford: 1999: 73-86
  • 149 Lias SG, Bartmess JE, Liebman JF, Holmes JL, Levin RD, Mallard WG. J. Phys. Chem. Ref. Data 1988; 17: Suppl. 1
  • 150 Kybett BD, Carroll S, Natalis P, Bonnell DW, Margrave JL, Franklin JL. J. Am. Chem. Soc. 1966; 88: 626
  • 151 Baker PK, Silgram H. Trends Organomet. Chem. 1999; 3: 21
  • 152 Sekiguchi A, Tanaka M, Matsuo T, Watanabe H. Angew. Chem. Int. Ed. 2001; 40: 1675
  • 153 Maier G, Neudert J, Wolf O. Angew. Chem. Int. Ed. 2001; 40: 1674
  • 154 Pelosi LF, Miller WT. J. Am. Chem. Soc. 1976; 98: 4311