Synlett 2015; 26(14): 2001-2005
DOI: 10.1055/s-0034-1378720
letter
© Georg Thieme Verlag Stuttgart · New York

A Straightforward Approach towards Functionalized Amino Acids and Pipecolinic Acids via Ruthenium-Catalyzed Allylic Alkylation

Phil Servatius
Institut für Organische Chemie, Universitaet des Saarlandes, 66123 Saarbruecken, Germany   Email: u.kazmaier@mx.uni-saarland.de
,
Uli Kazmaier*
Institut für Organische Chemie, Universitaet des Saarlandes, 66123 Saarbruecken, Germany   Email: u.kazmaier@mx.uni-saarland.de
› Author Affiliations
Further Information

Publication History

Received: 22 April 2015

Accepted: 18 May 2015

Publication Date:
11 June 2015 (online)


Abstract

Chelated amino acid ester enolates react with cis-butene diol substrates via Ru-catalyzed allylic alkylations to functionalized amino acids. The use of [(p-cymene)RuCl2]2 as catalyst allows the introduction of Z-configured allylic alcohols in the side chain of the amino acid. They facilitate access to pipecolinic acid and baikiaine derivatives.

Supporting Information

 
  • References and Notes

  • 1 Vranova V, Lojkova L, Rejsek K, Formanek P. Chirality 2013; 25: 823
    • 2a Sasse F, Steinmetz H, Heil J, Höfle G, Reichenbach H. J. Antibiot. 2000; 53: 879
    • 2b Steinmetz H, Glaser N, Herdtweck E, Sasse F, Reichenbach H, Höfle G. Angew. Chem. Int. Ed. 2004; 43: 4888 ; Angew. Chem. 2004, 116, 4996
    • 2c Ullrich A, Chai Y, Pistorius D, Elnakady YA, Herrmann J, Weissmann KJ, Kazmaier U, Müller R. Angew. Chem. Int. Ed. 2009; 48: 4422 ; Angew. Chem. 2009, 121, 4486
    • 2d Ullrich A, Herrmann J, Müller R, Kazmaier U. Eur. J. Org. Chem. 2009; 6367
    • 3a Tanaka H, Kuroda A, Marusawa H, Hatanaka H, Kino T, Goto T, Hashimoto M, Taga T. J. Am. Chem. Soc. 1987; 109: 5031
    • 3b Romo D, Meyer SD, Johnson DD, Schreiber SL. J. Am. Chem. Soc. 1993; 115: 7906
  • 4 King FE, King TJ, Warwick AJ. J. Chem. Soc. 1950; 25: 3590
    • 5a Alegret C, Ginesta X, Riera A. Eur. J. Org. Chem. 2008; 1789
    • 5b Ohara C, Takahashi R, Miyagawa T, Yoshimura Y, Kato A, Adachi I, Takahata H. Bioorg. Med. Chem. Lett. 2008; 1810
  • 6 Chai Y, Pistorius D, Ullrich A, Weissman KJ, Kazmaier U, Müller R. Chem. Biol. 2010; 17: 296
    • 8a Chang M.-Y, Kung Y.-H, Wu T.-C. Heterocycles 2006; 68: 2365
    • 8b Van den Broek SA. M. W, Rensen PG. W, van Delft FL, Rutjes FP. J. T. Eur. J. Org. Chem. 2010; 5906
    • 8c Chattopadhyay SK, Roy SP, Saha T. Synthesis 2011; 2664
    • 11a Hou D.-R, Hung S.-Y, Hu C.-C. Tetrahedron: Asymmetry 2005; 3858
    • 11b Fadel A, Lahrache N. J. Org. Chem. 2007; 72: 1780
    • 11c Wang B, Liu R.-H. Eur. J. Org. Chem. 2009; 2845
    • 12a Kazmaier U. Amino Acids 1996; 11: 283
    • 12b Kazmaier U. Liebigs Ann./Recl. 1997; 285
    • 13a Kazmaier U. Curr. Org. Chem. 2003; 317
    • 13b Kazmaier U In Frontiers in Asymmetric Synthesis and Application of alpha-Amino Acids . Soloshonok VA, Izawa K. ACS Books; Washington DC: 2009: 157
    • 14a Kazmaier U, Zumpe FL. Angew. Chem. Int. Ed. 2000; 39: 802 ; Angew. Chem. 2000, 112, 805
    • 14b Kazmaier U, Zumpe FL. Eur. J. Org. Chem. 2001; 4067
    • 14c Kazmaier U, Pohlman M. Synlett 2004; 623
    • 15a Kazmaier U, Lindner T. Angew. Chem. Int. Ed. 2005; 44: 3303 ; Angew. Chem. 2005, 117, 3368
    • 15b Lindner T, Kazmaier U. Adv. Synth. Catal. 2005; 347: 1687
    • 15c Krämer K, Kazmaier U. J. Org. Chem. 2006; 71: 8950
    • 16a Kazmaier U, Stolz D. Angew. Chem. Int. Ed. 2006; 45: 3072 ; Angew. Chem. 2006, 118, 3143
    • 16b Stolz D, Kazmaier U. Synthesis 2008; 2288
    • 16c Hähn S, Kazmaier U. Eur. J. Org. Chem. 2011; 4931
    • 17a Kondo T, Mitsudo T In Ruthenium in Organic Synthesis . Murahashi I. Wiley-VCH; Weinheim: 2004: 129
    • 17b Bayer A, Kazmaier U. Org. Lett. 2010; 12: 4960
    • 17c Bayer A, Kazmaier U. Chem. Eur. J. 2014; 20: 10484
    • 17d Bayer A, Kazmaier U. J. Org. Chem. 2014; 79: 8491
    • 17e Bayer A, Kazmaier U. J. Org. Chem. 2014; 79: 8498
  • 18 Minami I, Shimizu I, Tsuji J. J. Organomet. Chem. 1985; 296: 269
  • 19 Trost BM, Fraisse PL, Ball ZT. Angew. Chem. Int. Ed. 2002; 41: 1059 ; Angew. Chem. 2002, 114, 1101
    • 20a Hermatschweiler R, Fernandez I, Pregosin PS, Watson EJ, Albinati A, Rizzato S, Veiros LF, Calhorda MJ. Organometallics 2005; 24: 1809
    • 20b Hermatschweiler R, Fernandez I, Breher F, Pregosin PS, Veiros LF, Calhorda MJ. Angew. Chem. Int. Ed. 2005; 44: 4397 ; Angew. Chem. 2005, 117, 4471
    • 20c Fernandez I, Hermatschweiler R, Breher F, Pregosin PS, Veiros LF, Calhorda MJ. Angew. Chem. Int. Ed. 2006; 45: 6386 ; Angew. Chem. 2006, 118, 6535
    • 21a Mbaye MD, Demerseman B, Renaud J.-L, Toupet L, Bruneau C. Angew. Chem. Int. Ed. 2003; 42: 5066
    • 21b Bruneau C, Renaud JL, Demerseman B. Chem. Eur. J. 2006; 12: 5178
    • 21c Bruneau C, Renaud J.-L, Demerseman B. Pure Appl. Chem. 2008; 80: 861
    • 21d Zhang H.-J, Demerseman B, Toupet L, Xi Z, Bruneau C. Adv. Synth. Catal. 2008; 350: 1601
    • 22a Zhang S.-W, Mitsudo T, Kondo T, Watanabe Y. J. Organomet. Chem. 1993; 450: 197
    • 22b Kondo T, Morisaki Y, Uenoyama S, Wada K, Mitsudo T. J. Am. Chem. Soc. 1999; 121: 8657
    • 22c Kawatsura M, Ata F, Wada S, Hayase S, Uno H, Itoh T. Chem. Commun. 2007; 298
    • 22d Kawatsura M, Ata F, Hirakawa T, Hayase S, Itoh T. Tetrahedron Lett. 2008; 49: 4873
    • 23a Kawatsura M, Ata F, Wada S, Hayase S, Uno H, Itoh T. Chem. Commun. 2007; 12: 298
    • 23b Kawatsura M, Sato M, Tsuji H, Ata F, Itoh T. J. Org. Chem. 2011; 76: 5485
  • 24 General Procedure for the Ruthenium-Catalyzed Allylic Alkylations A solution of HMDS (335 mg, 2.07 mmol) in THF (2 mL) was prepared in a Schlenk flask under nitrogen. After the solution was cooled to –20 °C, a solution of n-BuLi in hexanes (1.6 M, 1.17 mL, 1.87 mmol) was added slowly. The cooling bath was removed, and stirring was continued for further 10 min. The solution was cooled to –78 °C, and the TFA-protected tert-butyl glycinate (171 mg, 0.75 mmol), dissolved in THF (2 mL), was added to the freshly prepared LHMDS solution. After 10 min a solution of dried ZnCl2 (123 mg, 0.90 mmol) in THF (2 mL) was added, and stirring was continued for 30 min at –78 °C. A solution was prepared from [(p-cymene)RuCl2]2 (6.4 mg, 0.01 mmol) and Ph3P (5.2 mg, 0.02 mmol) in THF (1 mL). The solution was stirred for 5 min before the allyl substrate (0.50 mmol) was added. The resulting solution was added slowly to the chelated enolate at –78 °C. The mixture was allowed to warm to r.t. overnight. The solution was diluted with Et2O (20 mL) before 1 M KHSO4 (10 mL) was added. After separation of the layers, the aqueous layer was extracted thrice with Et2O, and the combined organic layers were dried over Na2SO4. The solvent was evaporated in vacuo, and the crude product was purified by flash chromatography (SiO2). (Z)-6-[(tert-Butyldimethylsilyl)oxy]-2-(2,2,2-trifluoroacetamido)hex-4-enoic Acid tert-Butyl Ester (2c) 1H NMR (400 MHz, CDCl3): δ = 0.07 (s, 6 H), 0.90 (s, 9 H), 1.48 (s, 9 H), 2.68 (m, 2 H), 4.20 (m, 2 H), 4.48 (m, 1 H), 5.34 (dtt, J = 11.4, 7.8, 1.6 Hz, 1 H), 5.72 (dtt, J = 11.4, 5.6, 1.2 Hz, 1 H), 7.15 (d, J = 5.6 Hz, 1 H) ppm. 13C NMR (100 MHz, CDCl3): δ = –5.3, 18.4, 25.9, 27.9, 29.5, 52.6, 59.5, 83.4, 123.1, 134.0, 169.2 ppm. Signals of the TFA group could not be observed. HRMS (CI): m/z calcd for C18H32F3NO4Si [M]+: 411.2053; found: 411.2063. (6R,Z)-6-Acetoxy-2-(2,2,2-trifluoroacetamido)hept-4-enoic Acid tert-Butyl Ester [(R)-7a] (R)-7a was obtained as a 7:3 diastereomeric mixture. Major diastereomer: 1H NMR (400 MHz, CDCl3): δ = 1.29 (d, J = 6.2 Hz, 3 H), 1.47 (s, 9 H), 2.02 (s, 3 H), 2.65 (m, 1 H), 2.88 (m, 1 H), 4.44 (m, 1 H), 5.44 (m, 3 H), 7.51 (d, J = 6.8 Hz, 1 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 20.2, 21.1, 27.9, 29.5, 52.7, 66.7, 82.8, 127.3, 132.8, 157.4, 169.2, 171.6 ppm. Minor diastereomer (selected signals): 1H NMR (400 MHz, CDCl3): δ = 1.28 (d, J = 6.2 Hz, 3 H), 1.48 (s, 9 H), 2.01 (s, 3 H), 4.52 (m, 1 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 27.9, 52.5, 66.8 ppm. HRMS (CI): m/z calcd for C15H23F3NO5 [M + H]+: 354.1523; found: 354.1534. GC [l-Chirasil-Val, 80 °C, 10 min, 80 °C → 180 °C (1 °C/min), 40 min]: t R = 55.69 min (major), t R = 58.85 min (minor).
  • 25 Mitsunobu O. Synthesis 1981; 1
  • 26 1-(2,2,2-Trifluoroacetyl)-1,2,3,6-tetrahydropyridine-2-carboxylic Acid tert-Butyl Ester (8g) Alcohol 2g (179 mg, 0.60 mmol) was dissolved in abs. THF (13 mL) and added dropwise to a solution of Ph3P (254 mg, 0.960 mmol) and diisopropyl azodicarboxylate (196 μL, 204 mg, 0.96 mmol) in abs. THF (33 mL) at 0 °C. The reaction was allowed to warm to r.t. overnight. The solvent was evaporated, and the crude product was purified by column chromatography (silica gel; hexanes–ethyl acetate, 90:10). The desired product 8g (148 mg, 0.530 mmol, 88%) was obtained as a mixture of rotamers (ratio 55:45). Major rotamer: 1H NMR (400 MHz, CDCl3): δ = 1.43 (s, 9 H), 2.49 (m, 1 H), 2.73 (m, 1 H), 3.86 (m, 1 H), 4.19 (m, 1 H), 5.33 (dd, J = 6.6, 1.4 Hz, 1 H), 5.64 (m, 1 H), 5.83 (m, 1 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 25.8, 27.8, 42.1, 51.3, 82.6, 122.2, 123.4, 168.3 ppm. Minor rotamer (selected signals): 1H NMR (400 MHz, CDCl3): δ = 4.35 (m, 1 H), 4.70 (d, J = 6.0 Hz, 1 H), 5.73 (m, 1 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 26.8, 27.8, 42.5, 54.3, 82.9, 121.9, 122.9, 168.4 ppm. Signals of the TFA group could not be observed. HRMS (CI): m/z calcd for C12H17F3NO3 [M + H]+: 280.1155; found: 280.1159. Anal. Calcd (%) for C12H16F3NO3 (279.26): C, 51.61; H, 5.78; N, 5.02. Found: C, 51.76; H, 5.67; N, 4.98.