Synthesis 2015; 47(17): 2554-2569
DOI: 10.1055/s-0034-1378824
short review
© Georg Thieme Verlag Stuttgart · New York

Recent Advances in Radical Fluorination

Claire Chatalova-Sazepin
a   Chemistry Department, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada   Email: gsammis@chem.ubc.ca
,
Rémy Hemelaere
b   Canada Research Chair in Organic and Medicinal Chemistry, Département de chimie, 1045 avenue de la Médecine, Pavillon Alexandre-Vachon, Université Laval, Québec, Québec, G1V 0A6, Canada   Email: jean-francois.paquin@chm.ulaval.ca
,
Jean-François Paquin*
b   Canada Research Chair in Organic and Medicinal Chemistry, Département de chimie, 1045 avenue de la Médecine, Pavillon Alexandre-Vachon, Université Laval, Québec, Québec, G1V 0A6, Canada   Email: jean-francois.paquin@chm.ulaval.ca
,
Glenn M. Sammis*
a   Chemistry Department, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada   Email: gsammis@chem.ubc.ca
› Author Affiliations
Further Information

Publication History

Received: 07 May 2015

Accepted after revision: 06 July 2015

Publication Date:
03 August 2015 (online)


Abstract

The importance of fluorinated compounds in pharmaceutical, agrochemical, and material chemistry has led to the development of numerous methods for electrophilic and nucleophilic fluorination. Radical fluorination represents an interesting complementary approach, but it had been limited due to the paucity of selective radical fluorinating agents. The recent uncovering of easier to handle atomic fluorine sources has led to significant advances in radical fluorination in the past few years. This review presents the newly developed methods for fluorination involving radicals as reactive intermediates.

1 Introduction

2 Atomic Fluorine Sources

2.1 Fluorine as a Selective Radical Fluorinating Agent

2.2 Fluoroxy Reagents

2.3 XeF2

2.4 N–F Reagents as Atomic Fluorine Sources

3 Methodologies for Radical Fluorination

3.1 Decarboxylative Fluorination

3.2 Fluorination of Alkenes

3.3 Fluorination of Boronic Acid Derivatives

3.4 C(sp3)–H Fluorination

3.5 C–C Bond Activation

4 Conclusion

 
  • References

    • 1a Ismail FM. J. Fluorine Chem. 2002; 118: 27
    • 1b Dolbier WR. Jr. J. Fluorine Chem. 2005; 126: 157
    • 1c Jeschke P. ChemBioChem 2004; 5: 570
    • 1d Kirk KL. J. Fluorine Chem. 2006; 127: 1013
    • 1e Bégué J.-P, Bonnet-Delpon D. J. Fluorine Chem. 2006; 127: 992
    • 1f Lewandowski G, Meissner E, Milchert E. J. Hazard. Mater. 2006; 136: 385
    • 1g Sandford G. J. Fluorine Chem. 2007; 128: 90
    • 1h Kirsch P. Modern Fluoroorganic Chemistry . 2nd ed. Wiley; New York: 2003
    • 1i Tresseaud A, Haufe G. Fluorine and Health . Elsevier; Amsterdam: 2008
    • 2a Park BK, Kitteringham NR, O’Neill PM. Annu. Rev. Pharmacol. Toxicol. 2001; 41: 443
    • 2b Smart BE. J. Fluorine Chem. 2001; 109: 3
    • 2c Isanbor C, O’Hagan D. J. Fluorine Chem. 2006; 127: 303
    • 2d Purser S, Moore PR, Swallow S, Gouverneur V. Chem. Soc. Rev. 2007; 37: 320
    • 2e Müller K, Faeh C, Diederich F. Science 2007; 317: 1881
    • 2f Kirk KL. Org. Process Res. Dev. 2008; 12: 305
    • 2g Hagmann WK. J. Med. Chem. 2008; 51: 4359
    • 2h Bégué J.-P, Bonnet-Delpon D. Bioorganic and Medicinal Chemistry of Fluorine . Wiley; New York: 2008

      For general reviews on fluorination, see:
    • 3a Gerstenberger MR, Haas A. Angew. Chem., Int. Ed. Engl. 1981; 20: 647
    • 3b Wilkinson JA. Chem. Rev. 1992; 92: 505
    • 3c Ma J.-A, Cahard D. Chem. Rev. 2004; 104: 6119
    • 3d Shimizu M, Hiyama T. Angew. Chem. Int. Ed. 2005; 44: 214
    • 3e Lectard S, Hamashima Y, Sodeoka M. Adv. Synth. Catal. 2010; 352: 2708
    • 3f Valero G, Companyó X, Rios R. Chem. Eur. J. 2011; 17: 2018
    • 3g Furuya T, Kamlet AS, Ritter T. Nature 2011; 473: 470
    • 3h Liang T, Neumann CN, Ritter T. Angew. Chem. Int. Ed. 2013; 52: 8214
    • 3i Campbell MG, Ritter T. Org. Process Res. Dev. 2014; 18: 474
    • 3j Ma J.-A, Li S. Org. Chem. Front. 2014; 1: 712
    • 3k Campbell MG, Ritter T. Chem. Rev. 2015; 115: 612
    • 3l Yang X, Wu T, Phipps RJ, Toste FD. Chem. Rev. 2015; 115: 826
    • 3m Champagne PA, Desroches J, Hamel J.-D, Vandamme M, Paquin J.-F. Chem. Rev. 2015; 105: in press; DOI: 10.1021/cr500706a

    • For a review on electrophilic fluorination see:
    • 3n Taylor SD, Kotoris CC, Hum G. Tetrahedron 1999; 55: 12431

    • For reviews on nucleophilic fluorination, see:
    • 3o Hollingworth C, Gouverneur V. Chem. Commun. 2012; 48: 2929
    • 3p Wu J. Tetrahedron Lett. 2014; 55: 4289
  • 4 Weeks ME. J. Chem. Educ. 1932; 9: 1915
    • 5a Purrington ST, Kagen BS, Patrick TB. Chem. Rev. 1986; 86: 997
    • 5b Moilliet J. J. Fluorine Chem. 2001; 109: 13
    • 5c Sandford G. J. Fluorine Chem. 2007; 128: 90
  • 6 Tius MA. Tetrahedron 1995; 51: 6605
    • 7a Rozen S, Hebel D. J. Org. Chem. 1990; 55: 2621
    • 7b Rozen S. Chem. Rev. 1996; 96: 1717
  • 8 Lal GS, Pez GP, Syvret RG. Chem. Rev. 1996; 96: 1737
    • 9a Umemoto T, Tomita K. Tetrahedron Lett. 1986; 27: 3271
    • 9b Kiselyov AS. Chem. Soc. Rev. 2005; 34: 1031
  • 10 Differding E, Ofner H. Synlett 1991; 187
    • 11a Banks RE, Mohialdin-Khaffaf SN, Lal GS, Sharif I, Syvret RG. J. Chem. Soc., Chem. Commun. 1992; 595
    • 11b Nyffeler PT, Durón SG, Burkart MD, Vincent SP, Wong CH. Angew. Chem. Int. Ed. 2005; 44: 192
  • 12 Singh RP, Shreeve JM. Synthesis 2002; 2561
  • 13 Bigelow LA. Chem. Rev. 1947; 40: 51
  • 14 Hutchinson J, Sandford G. Top. Curr. Chem. 1997; 193: 1
  • 15 Simons JH, Block LP. J. Am. Chem. Soc. 1939; 61: 2962
  • 16 Bockemüller W. Ber. Dtsch. Chem. Ges. 1933; 506, 20
  • 17 Kharasch MS, Brown HC. J. Am. Chem. Soc. 1940; 62: 925
  • 18 Grakauskas V. J. Org. Chem. 1969; 34: 2446
    • 19a Menefee A, Cady GH. J. Am. Chem. Soc. 1954; 76: 2020
    • 19b Stewart RD, Cady GH. J. Am. Chem. Soc. 1955; 77: 6110
    • 19c Barnette WE, Wheland RC, Middleton WJ, Rozen S. J. Org. Chem. 1985; 50: 3698
    • 19d Rozen S, Hebel D. J. Org. Chem. 1990; 55: 2621
    • 20a Sandford G. J. Fluorine Chem. 2007; 128: 90
    • 20b Gatenyo J, Rozen S. J. Fluorine Chem. 2009; 130: 332
    • 20c Vints I, Rozen S. J. Org. Chem. 2014; 79: 7261
  • 21 Kellogg KB, Cady GH. J. Am. Chem. Soc. 1948; 70: 3986
  • 22 Barton DH. R, Hesse RH, Markwell RE, Pechet MM, Rozen S. J. Am. Chem. Soc. 1976; 98: 3036
    • 23a Hesse RH. Isr. J. Chem. 1978; 17: 60
    • 23b Rozen S. Chem. Rev. 1996; 96: 1717
    • 23c Navarrini W, Tortelli V, Russo A, Corti S. J. Fluorine Chem. 1999; 95: 27
  • 24 Czarnowski J, Castellano E, Schumacher HJ. Chem. Commun. 1968; 1255
  • 25 Wang N, Rowland F. J. Phys. Chem. 1985; 89: 5154
    • 26a Kollonitsch J, Barash L, Doldouras GA. J. Am. Chem. Soc. 1970; 92: 7494
    • 26b Kollonitsch J, Barash L. Nature 1973; 243: 346
    • 26c Kollonitsch J, Barash L. J. Am. Chem. Soc. 1976; 98: 5591
  • 27 Francesco V, Sansotera M, Navarrini W. J. Fluorine Chem. 2013; 155: 2
  • 28 For a general review on halodecarboxylations, see: Johnson RG, Ingham RK. Chem. Rev. 1956; 56: 219
    • 29a Patrick TB, Johru KK, White DH. J. Org. Chem. 1983; 48: 4158
    • 29b Patrick TB, Johri KK, White DH, Bertrand WS, Mokhtar R, Kilbourn MR, Welch MJ. Can. J. Chem. 1986; 64: 138
    • 29c Patrick TB, Khazaeli S, Nadji S, Hering-Smith K, Reif D. J. Org. Chem. 1993; 58: 705
  • 30 Lothian AP, Ramsden CA. Synlett 1993; 753
  • 31 Bandak D, Babii O, Vasiuta R, Komarov IV, Mykhailiuk PK. Org. Lett. 2015; 17: 226
  • 32 Sasson R, Rozen S. Tetrahedron 2005; 61: 1083
  • 33 Yamada S, Gavryushin A, Knochel P. Angew. Chem. Int. Ed. 2010; 49: 2215
  • 34 Ibrahim H, Togni A. Chem. Commun. 2004; 1147
  • 35 Rueda-Becerril M, Chatalova Sazepin C, Leung JC. T, Okbinoglu T, Kennepohl P, Paquin J.-F, Sammis GM. J. Am. Chem. Soc. 2012; 134: 4026
  • 36 Sibi MP, Landais Y. Angew. Chem. Int. Ed. 2013; 52: 3570
  • 37 Yin F, Wang Z, Li Z, Li C. J. Am. Chem. Soc. 2012; 134: 10401
  • 38 For Ag(II)-catalyzed decarboxylation, see: Anderson JM, Kochi JK. J. Org. Chem. 1970; 35: 986
  • 39 Mizuta S, Stenhagen IS. R, O’Duill M, Wolstenhulme J, Kirjavainen AK, Forsback SJ, Tredwell M, Sandford G, Moore PR, Huiban M, Luthra SK, Passchier J, Solin O, Gouverneur V. Org. Lett. 2013; 15: 2648
  • 40 Zhou J, Jin C, Su W. Org. Process Res. Dev. 2014; 18: 928
  • 41 Phae-nok S, Soorukram D, Kuhakarn C, Reutrakul V, Pohmakotr M. Eur. J. Org. Chem. 2015; 2879
  • 42 Leung JC. T, Chatalova Sazepin C, West JG, Rueda-Becerril M, Paquin J.-F, Sammis GM. Angew. Chem. Int. Ed. 2012; 51: 10804
  • 43 Leung JC. T, Sammis GM. Eur. J. Org. Chem. 2015; 2197
  • 44 Rueda-Becerril M, Mahé O, Drouin M, Majewski MB, West JG, Wolf MO, Sammis GM, Paquin J.-F. J. Am. Chem. Soc. 2014; 136: 2637
  • 45 Ventre S, Petronijević FR, Macmillan DW. C. J. Am. Chem. Soc. 2015; 137: 5654
  • 46 Huang X, Liu W, Hooker JM, Groves JT. Angew. Chem. Int. Ed. 2015; 54: 5241
  • 47 Barker TJ, Boger DL. J. Am. Chem. Soc. 2012; 134: 13588
  • 48 Shigehisa H, Nishi E, Fujisawa M, Hiroya K. Org. Lett. 2013; 15: 5158
  • 49 Li Z, Song L, Li C. J. Am. Chem. Soc. 2013; 135: 4640
  • 50 Zhang C, Li Z, Zhu L, Yu L, Wang Z, Li C. J. Am. Chem. Soc. 2013; 135: 14082
  • 51 Zhu L, Chen H, Wang Z, Li C. Org. Chem. Front. 2014; 1: 1299
  • 52 Wang H, Guo L.-N, Duan X.-H. Chem. Commun. 2014; 50: 7382
  • 53 Li Z, Zhang C, Zhu L, Liu C, Li C. Org. Chem. Front. 2014; 1: 100
  • 54 Kindt S, Heinrich MR. Chem. Eur. J. 2014; 20: 15344
  • 55 Guo R, Yang H, Tang P. Chem. Commun. 2015; 51: 8829
  • 56 Zhang H, Song Y, Zhao J, Zhang J, Zhang Q. Angew. Chem. Int. Ed. 2014; 53: 11079
  • 57 Yang Q, Mao L.-L, Yang B, Yang S.-D. Org. Lett. 2014; 16: 3460
  • 58 Bloom S, Knippel JL, Holl MG, Barber R, Lectka T. Tetrahedron Lett. 2014; 55: 4576
  • 59 Lu D.-F, Liu G.-S, Zhu C.-L, Yuan B, Xu H. Org. Lett. 2014; 16: 2912
  • 60 Li Z, Wang Z, Zhu L, Tan X, Li C. J. Am. Chem. Soc. 2014; 136: 16439
  • 61 Mazzotti AR, Campbell MG, Tang P, Murphy JM, Ritter T. J. Am. Chem. Soc. 2013; 135: 14012
  • 62 Ma J.-A, Li S. Org. Chem. Front. 2014; 1: 712
  • 63 Liu W, Huang X, Cheng M.-J, Nielsen RJ, Goddard WA, Groves JT. Science 2012; 337: 1322
  • 64 Bloom S, Pitts CR, Miller DC, Haselton N, Holl MG, Urheim E, Lectka T. Angew. Chem. Int. Ed. 2012; 51: 10580
  • 65 Pitts CR, Bloom S, Woltornist R, Auvenshine DJ, Ryzhkov LR, Siegler MA, Lectka T. J. Am. Chem. Soc. 2014; 136: 9780
    • 66a Bloom S, Pitts CR, Woltornist R, Griswold A, Holl MG, Lectka T. Org. Lett. 2013; 15: 1722
    • 66b Bloom S, Sharber SA, Holl MG, Knippel JL, Lectka T. J. Org. Chem. 2013; 78: 11082
    • 67a Liu W, Groves JT. Angew. Chem. Int. Ed. 2013; 52: 6024
    • 67b Liu W, Huang X, Groves JT. Nat. Protoc. 2013; 8: 2348
  • 68 Xia J.-B, Ma Y, Chen C. Org. Chem. Front. 2014; 1: 468
  • 69 Xu P, Guo S, Wang L, Tang P. Angew. Chem. Int. Ed. 2014; 53: 5955
  • 70 Amaoka Y, Nagatomo M, Inoue M. Org. Lett. 2013; 15: 2160
  • 71 Pitts CR, Ling B, Woltornist R, Liu R, Lectka T. J. Org. Chem. 2014; 79: 8895
  • 72 Zhang X, Guo S, Tang P. Org. Chem. Front. 2015; 2: 806
  • 73 Xia J.-B, Zhu C, Chen C. J. Am. Chem. Soc. 2013; 135: 17494
  • 74 Xia J.-B, Zhu C, Chen C. Chem. Commun. 2014; 50: 11701
    • 75a Bloom S, Knippel JL, Lectka T. Chem. Sci. 2014; 5: 1175
    • 75b Bloom S, McCann M, Lectka T. Org. Lett. 2014; 16: 6338
  • 76 Kee CW, Chin KF, Wong MW, Tan C.-H. Chem. Commun. 2014; 50: 8211
  • 77 Halperin SD, Fan H, Chang S, Martin RE, Britton R. Angew. Chem. Int. Ed. 2014; 53: 4690
  • 78 Zhao H, Fan X, Yu J, Zhu C. J. Am. Chem. Soc. 2015; 137: 3490
  • 79 Ishida N, Okumura S, Nakanishi Y, Murakami M. Chem. Lett. 2015; 44: 821
  • 80 Bloom S, Bume DD, Pitts CR, Lectka T. Chem. Eur. J. 2015; 21: 8060
  • 81 Ren S, Feng C, Loh T.-P. Org. Biomol. Chem. 2015; 13: 5105