Synlett 2014; 25(16): 2370-2374
DOI: 10.1055/s-0034-1378895
letter
© Georg Thieme Verlag Stuttgart · New York

A Novel Efficient Route for Acid-Catalyzed Synthesis of α,β-Alkynyl/Alkenyl Ketones

Xu Zhang*
School of Chemistry and Pharmacony Engineering, Nanyang Normal University, Nanyang 473061, P. R. of China   Email: zhangxuedu@126.com
,
Xuefeng Xu
School of Chemistry and Pharmacony Engineering, Nanyang Normal University, Nanyang 473061, P. R. of China   Email: zhangxuedu@126.com
,
Lintao Yu
School of Chemistry and Pharmacony Engineering, Nanyang Normal University, Nanyang 473061, P. R. of China   Email: zhangxuedu@126.com
,
Zhiqiang Wang
School of Chemistry and Pharmacony Engineering, Nanyang Normal University, Nanyang 473061, P. R. of China   Email: zhangxuedu@126.com
,
Qiang Zhao
School of Chemistry and Pharmacony Engineering, Nanyang Normal University, Nanyang 473061, P. R. of China   Email: zhangxuedu@126.com
› Author Affiliations
Further Information

Publication History

Received: 06 May 2014

Accepted after revision: 11 July 2014

Publication Date:
13 August 2014 (online)


Abstract

Herein, we have developed a simple and efficient synthesis of α,β-alkynyl/alkenyl ketone derivatives by acid-catalyzed reactions of 2,6-dimethyl-N-(4-methylbenzylidene)aniline and alkynes. This methodology provides a novel pathway for the synthesis of α,β-alkynyl/alkenyl ketones via acid-catalyzed coupling reactions and subsequent silica gel catalyzed hydrolysis. Characterized by wide substrate scope, mild reaction conditions, and good to excellent yields this protocol may aid the further development of the C–C coupling reactions.

Supporting Information

 
  • References

    • 1a Marco-Contelles J, de Opazo E. J. Org. Chem. 2002; 67: 3705
    • 1b Forsyth CJ, Xu J, Nguyen ST, Samdal IA, Briggs LR, Rundberget T, Sandvik M, Miles CO. J. Am. Chem. Soc. 2006; 128: 15114
    • 1c Karpov AS, Müller TJ. J. Org. Lett. 2003; 5: 3451
    • 1d Grotjahn DB, Van S, Combs D, Lev DA, Schneider C, Rideout M, Meyer C, Hernandez G, Mejorado L. J. Org. Chem. 2002; 67: 9200
    • 1e Dieter RK, Lu K. J. Org. Chem. 2002; 67: 847
    • 1f Nicolaou KC, Sarlah D, Shaw DM. Angew. Chem. Int. Ed. 2007; 46: 4708
    • 2a Corriu RJ. P, Huynh V, Moreau JJ. E. Tetrahedron Lett. 1984; 25: 1887
    • 2b Liang C, Li CJ. Org. Lett. 2004; 6: 3151
    • 2c Alonso DA, Najera C, Pacheco MC. J. Org. Chem. 2004; 69: 1615
    • 2d Yin J, Wang X.-j, Liang Y, Wu X, Chen B, Ma Y. Synthesis 2004; 3: 331
    • 2e Bilodeau F, Brochu M.-C, Guimond N, Thesen KH, Forgione P. J. Org. Chem. 2010; 75: 1550
    • 3a Walton DR. M, Waught F. J. Organomet. Chem. 1972; 37: 45
    • 3b Logue MW, Teng K. J. Org. Chem. 1982; 47: 2549
    • 3c Alonso DA, Najera C, Pacheco MC. J. Org. Chem. 2004; 69: 1615
    • 3d Cox RJ, Ritson DJ, Dane TA, Berge J, Charmant JP. H, Kantacha A. Chem. Commun. 2005; 1037
    • 3e Goossen LJ, Rodríguez N, Lange PP, Linder C. Angew. Chem. Int. Ed. 2010; 49: 1111
    • 3f Yamashita M, Hirano K, Satoh T, Miura M. Org. Lett. 2010; 12: 592
    • 3g Zhang S.-L, Fu Y, Shang R, Guo Q.-X, Liu L. J. Am. Chem. Soc. 2010; 132: 638
    • 3h Tambade PJ, Patil YP, Nandurkar NS, Bhanage BM. Synlett 2008; 886
    • 3i Kim WY, Park K, Park A, Choe J, Lee S. Org. Lett. 2013; 15: 1654
    • 3j Rad MN, Behrouz SS. Synlett 2011; 2562
    • 4a Goure WF, Wright ME, Davis PD, Labadie SS, Stille JK. J. Am. Chem. Soc. 1984; 106: 6417
    • 4b Grisp GT, Scott WJ, Stille JK. J. Am. Chem. Soc. 1984; 106: 7500
    • 4c Arcadi A, Cacchi S, Marinelli F, Pace P, Sanzi G. Synlett 1995; 823
    • 4d Delaude L, Masdeu AM, Alper H. Synthesis 1994; 1149
  • 5 Ahmed MS. M, Mori A. Org. Lett. 2003; 5: 3057
    • 6a Liang B, Dai M, Chen J, Yang Z. J. Org. Chem. 2005; 70: 391
    • 6b Liang B, Huang M, You Z, Xiong Z, Lu K, Fathi R, Chen J, Yang Z. J. Org. Chem. 2005; 70: 6097
    • 6c Liu J, Peng X, Sun W, Zhao Y, Xia C. Org. Lett. 2008; 10: 3933
  • 7 Tambade PJ, Patil YP, Nandurkar NS, Bhanage BM. Synlett 2008; 886
  • 9 Sonntag NO. V. Chem. Rev. 1953; 52: 272
  • 10 Quesnelle CA, Gill P, Dodier MSt, Laurent D, Serrano-Wu M, Marinier A, Martel A, Mazzucco CE, Stickle TM, Barrett JF, Vyas DM, Balasubramanian BN. Bioorg. Med. Chem. Lett. 2003; 13: 519
    • 11a Vong BG, Kim SH, Abraham S, Theodorakis EA. Angew. Chem. Int. Ed. 2004; 43: 3947
    • 11b Karpov AS, Merkul E, Rominger F, Müller TJ. J. Angew. Chem. Int. Ed. 2005; 44: 6951
    • 11c Forsyth CJ, Xu J, Nguyen ST, Samdai IA, Briggs LR, Rundberget T, Sandvik M, Miles CO. J. Am. Chem. Soc. 2006; 128: 15114
    • 11d Tietze LF, Singidi RR, Gericke KM, Böckemeier H, Laatsch H. Eur. J. Org. Chem. 2007; 5875
    • 11e Jackson MM, Leverett C, Toczko JF, Roberts JC. J. Org. Chem. 2002; 67: 5032
    • 11f Chen L, Li C. Org. Lett. 2004; 6: 3151
    • 11g Alonso DA, Nájera C, Pacheco MC. J. Org. Chem. 2004; 69: 1615
    • 11h Wang B, Bonin M, Micouin L. J. Org. Chem. 2005; 70: 6126
    • 11i Yim SJ, Kwon CH, An DK. Tetrahedron Lett. 2007; 48: 5393
    • 12a Rahman MT, Fukuyama T, Kamata N, Sato M, Ryu I. Chem. Commun. 2006; 2236
    • 12b Fusano A, Fukuyama T, Nishitani S, Inouye T, Ryu I. Org. Lett. 2010; 12: 2410
    • 12c Wang Y, Liu J, Xia C. Tetrahedron Lett. 2011; 52: 1587
    • 12d Wu X.-F, Neumann H, Beller M. Chem. Eur. J. 2010; 16: 12104
    • 12e Wu X.-F, Neumann H, Beller M. Angew. Chem. Int. Ed. 2011; 50: 11142
  • 13 Tang T, Fei X.-D, Ge Z.-Y, Chen Z, Zhu Y.-M, Ji S.-J. J. Org. Chem. 2013; 78: 3170
  • 14 General AgOTf-Catalyzed Reaction Procedure: A round-bottom flask (25 mL) was charged with imine (1 mmol, 1 equiv), arylacetylene (1.2 mmol, 1.2 equiv), AgOTf (0.05 mmol%), HOTf (0.05 mmol%), and toluene (5 mL). The mixture was stirred at 120 °C for 4 h. The reaction was allowed to cool to r.t., then was diluted with CH2Cl2 (10 mL) and washed with H2O (10 mL). The aqueous layer was extracted with CH2Cl2 (2 × 10 mL) and the combined organic phase was dried over CaCl2. After evaporation of the solvent, the residue was stirred with silica gel in CH2Cl2 at r.t. overnight. The resulting mixture was filtered and concentrated, and the crude product was purified by silica gel chromatography (CH2Cl2–PE).
  • 15 General HOTf-Catalyzed Reaction Procedure: A round-bottom flask (25 mL) was charged with imine (1 mmol, 1 equiv), arylacetylene (1.2 mmol, 1.2 equiv), HOTf (0.05 mmol%), and toluene (5 mL). The mixture was stirred at 120 °C for 4 h. The reaction was allowed to cool to r.t., then was diluted with CH2Cl2 (10 mL) and washed with H2O (10 mL). The aqueous layer was extracted with CH2Cl2 (2 × 10 mL) and the combined organic phase was dried over CaCl2. After evaporation of the solvent, the residue was stirred with silica gel in CH2Cl2 at r.t. overnight. The resulting mixture was filtered and concentrated, and the crude product was purified by silica gel chromatography (CH2Cl2–PE).
  • 16 Zhang X, Liu B, Shu X, Gao Y, Lv H, Zhu J. J. Org. Chem. 2012; 77: 501
    • 17a Zhang X, Xu X, Yu L, Zhao Q. Asian J. Org. Chem. 2014; 3: 281
    • 17b Xiao F, Chen Y, Liu Y, Wang J. Tetrahedron 2008; 64: 2755