Synlett 2014; 25(19): 2748-2752
DOI: 10.1055/s-0034-1379462
cluster
© Georg Thieme Verlag Stuttgart · New York

Conversion of Levulinate Ester and Formic Acid into γ-Valerolactone Using a Homogeneous Iron Catalyst

Ming-Chen Fu
Anhui Province Key Laboratory of Biomass Clean Energy, Collaborative Innovative Center of Chemistry for Energy Materials, and Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. of China   Fax: +86(551)63606689   Email: fuyao@ustc.edu.cn
,
Rui Shang
Anhui Province Key Laboratory of Biomass Clean Energy, Collaborative Innovative Center of Chemistry for Energy Materials, and Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. of China   Fax: +86(551)63606689   Email: fuyao@ustc.edu.cn
,
Zheng Huang
Anhui Province Key Laboratory of Biomass Clean Energy, Collaborative Innovative Center of Chemistry for Energy Materials, and Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. of China   Fax: +86(551)63606689   Email: fuyao@ustc.edu.cn
,
Yao Fu*
Anhui Province Key Laboratory of Biomass Clean Energy, Collaborative Innovative Center of Chemistry for Energy Materials, and Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. of China   Fax: +86(551)63606689   Email: fuyao@ustc.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 22 September 2014

Accepted after revision: 27 October 2014

Publication Date:
10 November 2014 (online)


Abstract

An iron-catalyzed hydrogenation of biomass-derived ethyl levulinate (EL) to γ-valerolactone (GVL) has been developed using formic acid as hydrogen source. Ethyl levulinate was converted into γ-valerolactone quantitatively under optimized reaction conditions. This catalytic process does not require the use of any base or additives.

Supporting Information

 
  • References

    • 1a Ragauskas AJ. Williams CK. Davison BH. Britovsek G. Cairney J. Eckert CA. Frederick WJ. Hallett JP. Leak DJ. Liotta CL. Mielenz JR. Murphy R. Templer R. Tschaplinski T. Science 2006; 311: 484
    • 1b Hube GW. Corma A. Angew. Chem. Int. Ed. 2007; 46: 7184
  • 2 Hube GW. Iborra S. Corma A. Chem. Rev. 2006; 106: 4044
  • 3 Li MX. Li GY. Li N. Wang AQ. Dong WJ. Wang XD. Cong Y. Chem. Commun. 2014; 50: 1414
  • 4 Huber GW. Chheda JN. Barrett CJ. Dumesic JA. Science 2005; 308: 1446
  • 5 Román-Leshkov Y. Barrett CJ. Liu ZY. Dumesic JA. Nature (London) 2007; 447: 982
  • 6 Weingarten R. Kim YT. Tompsett GA. Fernández A. Han KS. Hagaman EW. Conner WC. Jr. Dumesic JA. Huber GW. J. Catal. 2013; 304: 123
  • 7 Holm MS. Saravanamurugan S. Taarning E. Science 2010; 328: 602
  • 8 Lange JP. Price R. Ayoub PM. Louis J. Petrus L. Clarke L. Gosselink H. Angew. Chem. Int. Ed. 2010; 49: 4479
  • 9 Du XL. He L. Zhao S. Liu YM. Cao Y. He HY. Fan KN. Angew. Chem. Int. Ed. 2011; 50: 7815
  • 10 Lee J. Kim YT. Huber GW. Green Chem. 2014; 16: 708
    • 11a Bond QJ. Alonso DM. Wang D. West RM. Dumesic JA. Science 2010; 327: 1110
    • 11b Alonso DM. Wettstein SG. Dumesic JA. Green Chem. 2013; 15: 584
    • 11c Lange JP. Price R. Ayoub PM. Louis J. Petrus L. Clarke L. Gosselink H. Angew. Chem. Int. Ed. 2010; 49: 4479
    • 12a Bui L. Luo H. Gunther WR. Román-Leshkov Y. Angew. Chem. Int. Ed. 2013; 52: 8022
    • 12b Xin L. Zhang ZY. Qi J. Chadderdon DJ. Qiu Y. Warsko KM. Li WZ. ChemSusChem. 2013; 6: 674
  • 13 Yang Z. Huang YB. Guo QX. Fu Y. Chem. Commun. 2013; 49: 5328
    • 14a Deng L. Li J. Lai DM. Fu Y. Guo QX. Angew. Chem. Int. Ed. 2009; 48: 6529
    • 14b Li W. Xie JH. Lin H. Zhou QL. Green Chem. 2012; 14: 2388
  • 15 Zell T. Butschke B. Ben-David Y. Milstein D. Chem. Eur. J. 2013; 19: 8068
  • 16 Johnson TC. Morris DJ. Wills M. Chem. Soc. Rev. 2010; 39: 81
  • 17 Mehdi H. Fábos V. Tuba R. Bodor A. Mika LT. Horváth IT. Top. Catal. 2008; 48: 49
  • 18 Deng J. Wang Y. Pan T. Xu Q. Guo QX. Fu Y. ChemSusChem. 2013; 6: 1163
  • 19 Nakamura E. Sato K. Nature Mater. 2011; 10: 158
  • 20 Ren YL. Yan MJ. Wang JJ. Zhang ZC. Yao KS. Angew. Chem. Int. Ed. 2013; 52: 12073
    • 21a Ziebart C. Federsel C. Anbarasan P. Jackstell R. Baumann W. Spannenberg A. Beller M. J. Am. Chem. Soc. 2012; 134: 20701
    • 21b Fleischer S. Zhou SL. Junge K. Beller M. Angew. Chem. Int. Ed. 2013; 52: 5120
    • 21c Zell T. Ben-David Y. Milstein D. Angew. Chem. Int. Ed. 2014; 53: 4685
  • 22 Assary RS. Curtiss LA. Chem. Phys. Lett. 2012; 541: 21
    • 23a Wienhöfer G. Sorribes I. Boddien A. Westerhaus F. Junge K. Junge H. Llusar R. Beller M. J. Am. Chem. Soc. 2011; 133: 12875
    • 23b Wienhöfer G. Baseda-Krüger M. Ziebart C. Westerhaus FA. Baumann W. Jackstell R. Junge K. Beller M. Chem. Commun. 2013; 49: 9089
    • 23c Wienhöfer G. Westerhaus FA. Junge K. Beller M. J. Organomet. Chem. 2013; 744: 156
    • 23d Wienhöfer G. Westerhaus FA. Jagadeesh RV. Junge K. Junge H. Beller M. Chem. Commun. 2012; 48: 4827
    • 23e Boddien A. Mellmann D. Gärtner F. Jackstell R. Junge H. Dyson PJ. Laurenczy G. Ludwig R. Beller M. Science 2011; 333: 1733
    • 24a Geilen FM. A. Engendahl B. Harwardt A. Marquardt W. Klankermayer J. Walter L. Angew. Chem. Int. Ed. 2010; 49: 5510
    • 24b Geilen FM. A. Engendahl B. Hölscher M. Klankermayer J. Leitner W. J. Am. Chem. Soc. 2011; 133: 14349
  • 25 Chiba T. Okimoto M. Nagai H. Takata Y. Bull. Chem. Soc. Jpn. 1983; 56: 719
    • 26a Loges B. Boddien A. Junge H. Noyes JR. Baumann W. Beller M. Chem. Commun. 2009; 45: 4185
    • 26b Federsel C. Boddien A. Jackstell R. Jennerjahn R. Dyson PJ. Scopelliti R. Laurenczy G. Beller M. Angew. Chem. Int. Ed. 2010; 49: 9777