Synthesis 2015; 47(20): 3161-3168
DOI: 10.1055/s-0034-1381026
paper
© Georg Thieme Verlag Stuttgart · New York

A Metal-Free Approach to Carboxylic Acids by Oxidation of Alkyl, Aryl, or Heteroaryl Alkyl Ketones or Arylalkynes

K. A. Aravinda Kumar
a   Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-180 001, India
,
Vunnam Venkateswarlu
a   Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-180 001, India
b   Academy of Scientific and Innovative Research, Anusandhan Bhawan, 2 Rafi Marg, New Delhi 110 001, India   Email: sdsawant@iiim.res.in   Email: sawant.rrl@gmail.com
,
Ram A. Vishwakarma
a   Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-180 001, India
b   Academy of Scientific and Innovative Research, Anusandhan Bhawan, 2 Rafi Marg, New Delhi 110 001, India   Email: sdsawant@iiim.res.in   Email: sawant.rrl@gmail.com
,
Sanghapal D. Sawant*
a   Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-180 001, India
b   Academy of Scientific and Innovative Research, Anusandhan Bhawan, 2 Rafi Marg, New Delhi 110 001, India   Email: sdsawant@iiim.res.in   Email: sawant.rrl@gmail.com
› Author Affiliations
Further Information

Publication History

Received: 11 April 2015

Accepted after revision: 19 May 2015

Publication Date:
15 July 2015 (online)


Abstract

The metal-free oxidation of dialkyl, alkyl aryl, or alkyl heteroaryl ketones or arylalkynes to the corresponding carboxylic acids is achieved using an oxidative mixture of Oxone and trifluoroacetic acid. This green method is a simple and mild protocol to obtain carboxylic derivatives in excellent yields.

Supporting Information

 
  • References

    • 1a Cleaves II HJ. Carboxylic Acid . In Encyclopedia of Astrobiology . Gargaud M. Springer; New York: 2011: 249-250
    • 1b DeRuiter J. Carboxylic Acid Structure and Chemistry: Part 1. In Principles of Drug Action 1. Spring 2005; ; http://www.auburn.edu/~deruija/pda1_acids1.pdf, accessed 22nd June 2015
    • 1c Ballatore C, Huryn DM, Smith III AB. ChemMedChem 2013; 8: 385
    • 1d Skonberg C, Olsen J, Madsen KG, Hansen SH, Grillo MP. Expert Opin. Drug Metab. Toxicol. 2008; 4: 425
    • 2a Field KW, Shields JP, Standard JM, Ash CK, Hoch DJ, Kolb KE. J. Chem. Educ. 1985; 62: 637
    • 2b Tomoaki Y, Tomoya N, Yasuhisa K, Hirashima S, Norihiro T, Miura T, Itoh A. Synlett 2013; 24: 607
    • 2c William PG, Kwong E. Synth. Commun. 2003; 33: 2945
    • 2d Yasutaka I, Yasuyuki S. J. Org. Chem. 1990; 55: 5545
    • 2e Podgoršek A, Eissen M, Fleckenstein J, Stavber S, Marko Z, Jernej I. Green Chem. 2009; 11: 120
    • 3a Criegee R. Angew. Chem. 1975; 87: 765 ; Angew. Chem., Int. Ed. Engl. 1975, 14, 745
    • 3b Shing TK. M In Comprehensive Organic Synthesis . Vol. 7. Trost BM, Flemming I. Pergamon; Oxford: 1991: 703-716
    • 3c Bailey PS. Chem. Rev. 1958; 58: 925
    • 4a Larock RC. Comprehensive Organic Transformations . 2nd ed. Wiley-VCH; New York: 1999: 1213-1215
    • 4b Carlsen PH. J, Katsuki T, Martin VS, Sharpless KB. J. Org. Chem. 1981; 46: 3936
    • 5a Schroder M, Griffith WP. J. Chem. Soc., Dalton Trans. 1978; 1599
    • 5b Henry JR, Weinreb SM. J. Org. Chem. 1993; 58: 4745
    • 5c Travis BR, Narayan RS, Borhan B. J. Am. Chem. Soc. 2002; 124: 3824
    • 5d Lee K, Kim Y.-H, Han SB, Kang H, Park S, Seo WS, Park JT, Kim B, Chang S. J. Am. Chem. Soc. 2003; 125: 6844
    • 5e Hart SR, Whitehead DC, Travis BR, Borhan B. Org. Biomol. Chem. 2011; 9: 4741
    • 5f Milas NA, Trepagnier JH, Nolan JT. Jr, Iliopulos MI. J. Am. Chem. Soc. 1959; 81: 4730
    • 5g Nielsen TE, Meldal M. Org. Lett. 2005; 7: 2695
    • 6a Lemieux RU, Rudloff EV. Can. J. Chem. 1955; 33: 1701
    • 6b Starks CM. J. Am. Chem. Soc. 1971; 93: 195
    • 6c Sam DJ, Simmons HE. J. Am. Chem. Soc. 1972; 94: 4024
    • 6d Krapcho AP, Larson JR, Eldridge JM. J. Org. Chem. 1977; 42: 3749
    • 6e Lee DG, Chang VS. J. Org. Chem. 1978; 43: 1532
    • 6f Lee DG, Chang VS. J. Org. Chem. 1979; 44: 2726
    • 7a Lee DG, van der Engh M In Oxidation in Organic Chemistry, Part B . Trahanovsky WS. Academic Press; New York: 1973: 186
    • 7b Gopal H, Gordon AJ. Tetrahedron Lett. 1971; 12: 2941
    • 7c Muller P, Godoy J. Helv. Chim. Acta 1981; 64: 2531
    • 7d Neumann R, Abu-Gnim C. J. Am. Chem. Soc. 1990; 112: 6025
    • 7e Kaneda K, Haruna S, Imanaka T, Kawamoto K. J. Chem. Soc., Chem. Commun. 1990; 1467
    • 7f Griffith WP, Shoair AG, Suriaatmaja M. Synth. Commun. 2000; 30: 3091
    • 7g Yang D, Zhang C. J. Org. Chem. 2001; 66: 4814
    • 7h Chen YK, Lurain AE, Walsh PJ. J. Am. Chem. Soc. 2002; 124: 12225
  • 8 Ballistreri FP, Failla S, Spina E, Tomaselli GA. J. Org. Chem. 1989; 54: 947
    • 9a Deng X, Friend CM. J. Am. Chem. Soc. 2005; 127: 17178
    • 9b Klust A, Madix RJ. J. Am. Chem. Soc. 2006; 128: 1034
    • 9c Zielasek V, Xu B, Liu X, Baumer MB, Friend CM. J. Phys. Chem. C 2009; 113: 8924
    • 9d Quiller RG, Liu X, Friend CM. Chem. Asian J. 2010; 5: 78
  • 10 Zhu Z, Espenson JH. J. Org. Chem. 1995; 60: 7728
    • 11a Ishii Y, Yamawaki K, Ura T, Yamada H, Yoshida T, Ogawa M. J. Org. Chem. 1988; 53: 3587
    • 11b Oguchi T, Ura T, Ishii Y, Ogawa M. Chem. Lett. 1989; 857
    • 11c Sato K, Aoki M, Noyori R. Science (Washington, D.C.) 1998; 281: 1646
    • 11d Antonelli E, D’Aloisio R, Gambaro M, Fiorani T, Venturello C. J. Org. Chem. 1998; 63: 7190
    • 11e Oakley MA, Woodward S, Coupland K, Parker D, Temple-Heald C. J. Mol. Catal. A: Chem. 1999; 150: 105
    • 11f Freitag J, Nuchter M, Ondruschka B. Green Chem. 2003; 5: 291
    • 11g Noyori R, Aoki M, Sato K. Chem. Commun. 2003; 1977
    • 11h Fujitani K, Mizutani T, Oida T, Kawase T. J. Oleo Sci. 2009; 58: 37
    • 12a Das S, Mahanti MK. Oxid. Commun. 2006; 29: 851
    • 12b Shin-ichi H, Tomoya N, Norihiro T, Itoh A. Synlett 2009; 2017
    • 13a Venkateswarlu V, Aravinda Kumar KA, Balgotra S, Reddy GL, Srinivas M, Vishwakarma RA, Sawant SD. Chem. Eur. J. 2014; 20: 6641
    • 13b Venkateswarlu V, Balgotra S, Aravinda Kumar KA, Vishwakarma RA, Sawant SD. Synlett 2015; 26: 1258
    • 13c Balgotra S, Venkateswarlu V, Vishwakarma RA, Sawant SD. Tetrahedron Lett. 2015; 56: 4289
    • 13d Srinivas M, Hudwekar AD, Venkateswarlu V, Reddy GL, Aravinda Kumar KA, Vishwakarma RA, Sawant SD. Tetrahedron Lett. 2015; in press; DOI: 10.1016/j.tetlet. 2015.06.052
    • 13e Venkateswarlu V, Aravinda Kumar KA, Gupta S, Singh D, Vishwakarma RA, Sawant SD. Org. Biomol. Chem. 2015; in press; DOI: 10.1039/C5OB01015B
    • 14a Long L. Chem. Rev. 1940; 27: 437
    • 14b Bailey PS, Chang VS, Kwie WW. L. J. Org. Chem. 1962; 27: 1198
    • 14c Yang NC. C, Libman J. J. Org. Chem. 1974; 39: 1782
    • 14d Ando W, Miyazaki H, Ito K, Auchi D. Tetrahedron Lett. 1982; 23: 555
    • 14e Silbert LS, Foglia TA. Anal. Chem. 1985; 57: 1404
    • 15a Shaikh TM, Honga FE. Adv. Synth. Catal. 2011; 353: 1491
    • 15b Shaikh TM, Arumugam S. Eur. J. Org. Chem. 2008; 4877
    • 15c Nemoto K, Yoshida H, Egusa N, Morohashi N, Hattori T. J. Org. Chem. 2010; 75: 7855
    • 15d Yang CM, Chung YT. Tetrahedron Lett. 2014; 55: 5548
    • 15e Kumar S, Dixit SK, Awasthi SK. Tetrahedron Lett. 2014; 55: 3802
    • 15f Friis SD, Andersen TL, Skrydstrup T. Org. Lett. 2013; 15: 1378
    • 15g Zheng R, Zhou Q, Gu H, Jiang H, Wu J, Jin Z, Han D, Dai G, Chen R. Tetrahedron Lett. 2014; 55: 5671
    • 15h Rajender Kumar P, Raju S, Satish Goud P, Sailaja M, Sarma MR, Om Reddy G, Prem Kumar M, Reddy VV. R. M. K, Suresh T, Hegde P. Bioorg. Med. Chem. 2004; 12: 1221
    • 15i Nguyen T.-H, Chau NT. T, Castanet A.-S, Nguyen KP. P, Mortier J. J. Org. Chem. 2007; 72: 3419
    • 15j Li H.-S, Liu G. J. Org. Chem. 2014; 79: 509
    • 15k Szumna A. Chem. Commun. 2009; 4191
    • 15l Kim SM, Kim YS, Kim DW, Yang JW. Green Chem. 2012; 14: 2996
    • 15m Vishwakarma RA, Sawant SD, Singh PP, Dar AH, Sharma PR, Saxena AK, Nargotra A, Aravindakumar KA, Mudududdla R, Qazi AK, Hussain A, Chanauria N. US 20150051173, 2015