Synlett 2016; 27(01): 151-155
DOI: 10.1055/s-0035-1560583
letter
© Georg Thieme Verlag Stuttgart · New York

Tertiary Amine Promoted Aziridination: Preparation of NH-Aziridines from Aliphatic α,β-Unsaturated Ketones

Alan Armstrong*
a   Department of Chemistry, Imperial College London, South Kensington, London, SW7 2AZ, UK   Email: a.armstrong@imperial.ac.uk
,
Robert D. C. Pullin
a   Department of Chemistry, Imperial College London, South Kensington, London, SW7 2AZ, UK   Email: a.armstrong@imperial.ac.uk
,
James N. Scutt
b   Syngenta Ltd., Jealott’s Hill International Research Centre, Bracknell, Berkshire, RG42 6EY, UK
› Author Affiliations
Further Information

Publication History

Received: 02 October 2015

Accepted after revision: 09 October 2015

Publication Date:
03 November 2015 (online)


Dedicated to Professor Steven V. Ley on the occasion of his 70th birthday

Abstract

trans-NH-Aziridines were prepared from aliphatic α,β-unsaturated ketones using a tertiary amine promoted reaction via in situ generated N,N-ylides. Through use of modified conditions the reaction proved to be applicable for the diastereoselective aziridination of a range of enolisable aliphatic α,β-unsaturated ketones of varying substitution patterns.

Supporting Information

 
  • References and Notes

  • 1 Current address: Dr. R. D. C. Pullin, Vertex Pharmaceuticals (Europe) Ltd., 86-88 Jubilee Avenue, Milton Park, Abingdon, Oxfordshire, OX14 4RW, UK.
  • 2 For a review, see: Lowden PA. S. In Aziridines and Epoxides in Organic Synthesis . Yudin AK. Wiley-VCH; Weinheim: 2006: 399

    • For recent reviews, see:
    • 4a Pellissier H. Tetrahedron 2010; 66: 1509
    • 4b Pellissier H. Adv. Synth. Catal. 2014; 356: 1899
    • 4c Degennaro L, Trinchera P, Luisi R. Chem. Rev. 2014; 114: 7881

      For selected examples, see:
    • 5a Evans DA, Faul MM, Bilodeau MT, Anderson BA, Barnes DM. J. Am. Chem. Soc. 1993; 115: 5328
    • 5b Gillespie KM, Sanders CJ, O’Shaughnessy P, Westmoreland I, Thickitt CP, Scott P. J. Org. Chem. 2002; 67: 3450
    • 5c Wang X, Ding K. Chem. Eur. J. 2006; 12: 4568

      For example:
    • 6a Ma L, Du D.-M, Xu J. J. Org. Chem. 2005; 70: 10155
    • 6b Ma L, Jiao P, Zhang Q, Xu J. Tetrahedron: Asymmetry 2005; 16: 3718

      For examples, see:
    • 7a Vesely J, Ibrahem I, Zhao GL, Rios R, Córdova A. Angew. Chem. Int. Ed. 2007; 46: 778
    • 7b Arai H, Sugaya N, Sasaki N, Makino K, Lectard S, Hamada Y. Tetrahedron Lett. 2009; 50: 3329
    • 7c Deiana L, Zhao G.-L, Lin S, Dziedzic P, Zhang Q, Leijonmarck H, Córdova A. Adv. Synth. Catal. 2010; 352: 3201
    • 7d Deiana L, Dziedzic P, Zhao G.-L, Vesely J, Ibrahem I, Rios R, Sun J, Córdova A. Chem. Eur. J. 2011; 17: 7904
    • 7e Desmarchelier A, Pereira de Sant’Ana D, Terrasson V, Campagne JM, Moreau X, Greck C, Marcia de Figueiredo R. Eur. J. Org. Chem. 2011; 4046
    • 7f Molnar IG, Tanzer E.-M, Daniliuc C, Gilmour R. Chem. Eur. J. 2014; 20: 794

      Isolated examples have been reported, examples include:
    • 8a Fioravanti S, Pellacani L, Tabanella S, Tardella PA. Tetrahedron 1998; 54: 14105
    • 8b Tung S, Yudin AK. J. Am. Chem. Soc. 2002; 124: 530
    • 8c Chen D, Timmons C, Guo L, Xu X, Li G. Synthesis 2004; 2479
    • 8d Zibinsky M, Stewart T, Prakash GK. S, Kuznetsov MA. Eur. J. Org. Chem. 2009; 3635
  • 9 Pesciaioli F, De Vincentiis F, Galzerano P, Bencivenni G, Bartoli G, Mazzanti A, Melchiorre P. Angew. Chem. Int. Ed. 2008; 47: 8703
  • 10 De Vincentiis F, Bencivenni G, Pesciaioli F, Mazzanti A, Bartoli G, Galzerano P, Melchiorre P. Chem. Asian. J. 2010; 5: 1652
  • 11 Ikeda I, Machii Y, Okahara M. Synthesis 1980; 650
  • 12 Xu J, Jiao P. J. Chem. Soc., Perkin Trans. 1 2002; 1491
  • 13 Armstrong A, Carbery DR, Lamont SG, Pape AR, Wincewicz R. Synlett 2006; 2504
    • 14a Armstrong A, Baxter CA, Lamont SG, Pape AR, Wincewicz R. Org. Lett. 2007; 9: 351
    • 14b Armstrong A, Pullin RD. C, Jenner CR, Scutt JN. J. Org. Chem. 2010; 75: 3499
    • 14c Armstrong A, Ferguson A. Beilstein J. Org. Chem. 2012; 8: 1747
    • 14d Armstrong A, Pullin RD. C, Jenner CR, Foo K, White AJ. P, Scutt JN. Tetrahedron: Asymmetry 2014; 25: 74

      See also:
    • 15a Shen Y.-M, Zhao M.-X, Xu J, Shi Y. Angew. Chem. Int. Ed. 2006; 45: 8005
    • 15b Page PC. B, Bordogna C, Strutt I, Chan Y, Buckley BR. Synlett 2013; 24: 2067
  • 16 Diastereoselectivity determined to be >95:5 by 1H NMR spectroscopy. The cis and trans diastereoselectivity was determined by analysis of the 3 J coupling constants of the aziridine ring; generally trans-aziridines have 3 J = 2–4 Hz, cis-aziridines 3 J = 5–9 Hz. All aziridines prepared were determined be a single dia­stereoisomer.
  • 17 Fioravanti S, Mascia MG, Pellacani L, Tardella PA. Tetrahedron 2004; 60: 8073
  • 18 Menjo Y, Hamajima A, Sasaki N, Hamada Y. Org. Lett. 2011; 13: 5744

    • For the aziridination certain cyclic enones using N,N-ylides, see:
    • 19a Oves D, Ferrero M, Fernandez S, Gotor V. J. Org. Chem. 2002; 68: 1154
    • 19b De SR, Ghorai SK, Mal D. J. Org. Chem. 2009; 74: 1598
  • 20 Aziridine 4e was resubmitted to the reaction conditions in place of the enone substrate and was recovered in quantitative amounts.
  • 21 Representative Procedure for Enone Aziridination N-Methylmorpholine (14 μL, 0.125 mmol) was added dropwise to a solution of DppONH2 (56.0 mg, 0.24 mmol) in CH2Cl2 (2 mL) at r.t., and the mixture was stirred for 0.5 h. i-PrOH (28 μL, 0.36 mmol) and NaH (60% dispersion in mineral oil, 14.4 mg, 0.36 mmol) were then added sequentially followed by addition of trans-4-phenylbut-3-en-2-one (3a, 17.5 mg, 0.12 mmol) in CH2Cl2 (1 mL) and the mixture allowed to stir at r.t. for 16 h. The reaction was quenched by the addition of sat. aq NH4Cl solution and the aqueous layer separated and extracted with CH2Cl2, dried (Na2SO4), filtered and concentrated in vacuo. Purification by flash column chromatography (15% EtOAc–n-hexane) afforded (2R*,3S*)-1-(3-phenylaziridin-2-yl)ethanone (4a, 15.6 mg, 80%) as a colourless oil; Rf = 0.30 (15% EtOAc–n-hexane). 1H NMR (400 MHz, CDCl3): δ = 7.38–7.27 (5 H, m, 5 × PhH), 3.04 (1 H, d, J = 2.0 Hz, 3-CHN), 2.86 (1 H, d, J = 2.1 Hz, 2-CHN), 2.38 (3 H, s, CH3), 2.29 (1 H, br, NH). 13C NMR (100 MHz, CDCl3): δ = 204.5, 138.2, 128.5, 127.8, 126.1, 46.8, 43.0, 29.6.