Synlett 2015; 26(18): 2588-2592
DOI: 10.1055/s-0035-1560645
letter
© Georg Thieme Verlag Stuttgart · New York

A New Class of Squaramide-Containing Phase-Transfer Catalysts: Application to Asymmetric Fluorination of β-Keto Esters

Bin Wang
Department of Organic Chemistry, College of Chemistry, Jilin university, Address 2699 Qianjin Street, Changchun 130012, P. R. of China   Email: linyj@jlu.edu.cn   duanhf@jlu.edu.cn
,
Yingdong He
Department of Organic Chemistry, College of Chemistry, Jilin university, Address 2699 Qianjin Street, Changchun 130012, P. R. of China   Email: linyj@jlu.edu.cn   duanhf@jlu.edu.cn
,
Xuancheng Fu
Department of Organic Chemistry, College of Chemistry, Jilin university, Address 2699 Qianjin Street, Changchun 130012, P. R. of China   Email: linyj@jlu.edu.cn   duanhf@jlu.edu.cn
,
Zhonglin Wei
Department of Organic Chemistry, College of Chemistry, Jilin university, Address 2699 Qianjin Street, Changchun 130012, P. R. of China   Email: linyj@jlu.edu.cn   duanhf@jlu.edu.cn
,
Yingjie Lin*
Department of Organic Chemistry, College of Chemistry, Jilin university, Address 2699 Qianjin Street, Changchun 130012, P. R. of China   Email: linyj@jlu.edu.cn   duanhf@jlu.edu.cn
,
Haifeng Duan*
Department of Organic Chemistry, College of Chemistry, Jilin university, Address 2699 Qianjin Street, Changchun 130012, P. R. of China   Email: linyj@jlu.edu.cn   duanhf@jlu.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 19 June 2015

Accepted after revision: 15 August 2015

Publication Date:
14 September 2015 (online)


Abstract

The squaramide moiety has proven to be a powerful hydrogen-bonding donor in organocatalysis, but chiral phase-transfer catalysts bearing the squaramide motif have not been reported so far. Reported herein is this kind of catalyst and their catalytic performance in the asymmetric fluorination of β-keto esters.

Supporting Information

 
  • References and Notes

    • 2a Maruoka K. Chem. Rec. 2010; 10: 254
    • 2b Maruoka K. Pure Appl. Chem. 2012; 84: 1575
    • 2c Xiang B, Belyk KM, Reamer RA, Yasuda N. Angew. Chem. Int. Ed. 2014; 53: 8375
  • 3 Novacek J, Waser M. Eur. J. Org. Chem. 2013; 637
    • 4a Ooi T, Ohara D, Tamura M, Maruoka K. J. Am. Chem. Soc. 2004; 126: 6844
    • 4b Berkessel A, Guixa M, Schmidt F, Neudorfl JM, Lex J. Chem. Eur. J. 2007; 13: 4483
    • 4c Uraguchi D, Koshimoto K, Ooi T. J. Am. Chem. Soc. 2008; 130: 10878
    • 4d He R, Shirakawa S, Maruoka K. J. Am. Chem. Soc. 2009; 131: 16620
    • 4e Liu Y, Provencher BA, Bartelson KJ, Deng L. Chem. Sci. 2011; 2: 1301
    • 4f Provencher BA, Bartelson KJ, Liu Y, Foxman BM, Deng L. Angew. Chem. Int. Ed. 2011; 50: 10565
    • 5a Bernal P, Fernandez R, Lassaletta JM. Chem. Eur. J. 2010; 16: 7714
    • 5b Johnson KM, Rattley MS, Sladojevich F, Barber DM, Nunez MG, Goldys AM, Dixon DJ. Org. Lett. 2012; 14: 2492
    • 5c Cao DD, Chai Z, Zhang JX, Ye ZQ, Xiao H, Wang HY, Chen JH, Wu XY, Zhao G. Chem. Commun. 2013; 49: 5972
    • 5d Li ML, Woods PA, Smith MD. Chem. Sci. 2013; 4: 2907
    • 5e Wang HY, Chai Z, Zhao G. Tetrahedron 2013; 69: 5104
    • 5f Wang HY, Zhang JX, Cao DD, Zhao G. ACS Catal. 2013; 3: 2218
    • 5g Shirakawa S, Koga K, Tokuda T, Yamamoto K, Maruoka K. Angew. Chem. Int. Ed. 2014; 53: 6220
    • 5h Novacek J, Waser M. Eur. J. Org. Chem. 2014; 802
  • 6 Wang B, Liu Y, Sun C, Wei Z, Cao J, Liang D, Lin Y, Duan H. Org. Lett. 2014; 16: 6432
    • 7a Alemán J, Parra A, Jiang H, Jørgensen KA. Chem. Eur. J. 2011; 17: 6890
    • 7b Storer RI, Aciro C, Jones LH. Chem. Soc. Rev. 2011; 40: 2330
    • 7c Chauhan P, Mahajan S, Kaya U, Hack D, Enders D. Adv. Synth. Catal. 2015; 357: 253
  • 8 Malerich JP, Hagihara K, Rawal VH. J. Am. Chem. Soc. 2008; 130: 14416

    • For selected examples, see:
    • 9a Konishi H, Lam TY, Malerich JP, Rawal VH. Org. Lett. 2010; 12: 2028
    • 9b Qian Y, Ma G, Lv A, Zhu H.-L, Zhao J, Rawal VH. Chem. Commun. 2010; 46: 3004
    • 9c Duan S.-W, Li Y, Liu Y.-Y, Zou Y.-Q, Shi D.-Q, Xiao W.-J. Chem. Commun. 2012; 48: 5160
    • 9d Ling J.-B, Su Y, Zhu H.-L, Wang G.-Y, Xu P.-F. Org. Lett. 2012; 14: 1090
    • 9e Yang H.-J, Dai L, Yang S.-Q, Chen F.-E. Synlett 2012; 23: 948
    • 9f Yang W, Du D.-M. Org. Biomol. Chem. 2012; 10: 6876
    • 9g Zhao G, Wu J, Dai W.-M. Synlett 2012; 23: 2845
    • 9h Zhao M.-X, Wei D.-K, Ji F.-H, Zhao X.-L, Shi M. Chem. Asian J. 2012; 7: 2777
    • 9i Loh CC. J, Hack D, Enders D. Chem. Commun. 2013; 49: 10230
    • 9j Tan F, Cheng H.-G, Feng B, Zou Y.-Q, Duan S.-W, Chen J.-R, Xiao W.-J. Eur. J. Org. Chem. 2013; 2071
    • 9k Zhao M.-X, Bi H.-L, Zhou H, Yang H, Shi M. J. Org. Chem. 2013; 78: 9377
    • 9l Chauhan P, Urbanietz G, Raabe G, Enders D. Chem. Commun. 2014; 50: 6853
    • 9m Gao Y, Du D.-M. Chem. Asian J. 2014; 9: 2970
    • 9n Loh CC. J, Chauhan P, Hack D, Lehmann C, Enders D. Adv. Synth. Catal. 2014; 356: 3181

      Selected examples for metallic systems:
    • 10a Hamashima Y, Yagi K, Takano H, Tamás L, Sodeoka M. J. Am. Chem. Soc. 2002; 124: 14530
    • 10b Toru T, Shibata N, Ishimaru T, Nagai T, Kohno J. Synlett 2004; 1703
    • 10c Shibata N, Kohno J, Takai K, Ishimaru T, Nakamura S, Toru T, Kanemasa S. Angew. Chem. Int. Ed. 2005; 44: 4204
    • 10d Kim DY, Park EJ. Org. Lett. 2002; 4: 545

    • Selected examples for organocatalytic systems:
    • 10e Wang X, Lan Q, Shirakawa S, Maruoka K. Chem. Commun. 2010; 46: 321
    • 10f Xu J, Hu Y, Huang D, Wang K.-H, Xu C, Niu T. Adv. Synth. Catal. 2012; 354: 515
    • 10g Luo J, Wu W, Xu L.-W, Meng Y, Lu Y. Tetrahedron Lett. 2013; 54: 2623
    • 10h Novacek J, Waser M. Eur. J. Org. Chem. 2014; 802
  • 11 Catalyst 2e Light yellow solid; mp 173–174 °C; [α]D 25 –18.8 (c 0.5, MeOH). 1H NMR (300 MHz, CD3OD): δ = 8.84 (s, 1 H), 8.15–7.91 (m, 4 H), 7.85 (s, 1 H), 7.65–7.31 (m, 5 H), 7.23–6.92 (m, 2 H), 6.01–5.81 (m, 1 H), 5.41–4.95 (m, 4 H), 4.27–4.01 (m, 4 H), 3.76–3.41 (m, 3 H), 2.89–2.62 (m, 1 H), 2.32–2.07 (m, 3 H), 2.01–1.94 (m, 1 H), 1.30 (s, 21 H, 2 t-Bu+). 13C NMR (101 MHz, MeOD): δ = 185.95, 181.75, 168.26, 166.86, 160.82, 153.20, 148.62, 145.65, 144.71, 141.77, 138.80, 137.52, 133.56 (q, J = 33.3 Hz), 132.24, 129.85, 129.13, 128.32, 126.23, 125.66, 125.60, 123.21 (q, J = 332 Hz), 122.96, 119.25, 116.79, 102.00, 70.88, 69.93, 61.27, 56.92, 55.21, 50.82, 38.54, 35.73, 31.68, 28.07, 25.68, 21.47. ESI-HRMS: m/z calcd for C39H35F6N4O3 [M – Br]+: 721.2608; found: 721.2606.
  • 12 Typical Procedure for the Asymmetric Fluorination of β-Keto Esters Using Catalyst 2e To a solution of the β-keto ester (0.1 mmol) and catalyst 2e (4.6 mg, 5 mol%) in Et2O (1 mL) was added 2 M K2CO3 solution (100 μL), then the solution was cooled to –10 °C. NFSI (37.84 mg, 0.12 mmol) was added in one portion and the mixture was stirred vigorously for 4 h, quenched with 10 mL sat. NH4Cl solution and extracted with Et2O (10 mL). The organic layer was dried with anhydrous Na2SO4 and concentrated. The crude product was purified by column chromatography on silica gel (PE–EtOAc).