Synlett 2016; 27(10): 1557-1562
DOI: 10.1055/s-0035-1561408
letter
© Georg Thieme Verlag Stuttgart · New York

Peracetic Acid Mediated sp2 C–H Selenation of Arenes

Ping-An Hsieh
a   Department of Chemistry, National Chung Hsing University, Taichung, Taiwan 402, Taiwan   Email: cfalee@dragon.nchu.edu.tw
,
Satpal Singh Badsara
a   Department of Chemistry, National Chung Hsing University, Taichung, Taiwan 402, Taiwan   Email: cfalee@dragon.nchu.edu.tw
b   Current address: Department of Chemistry University of Rajasthan, Jaipur 302004, Rajasthan, India
,
Chia-Hsuan Tsai
a   Department of Chemistry, National Chung Hsing University, Taichung, Taiwan 402, Taiwan   Email: cfalee@dragon.nchu.edu.tw
,
Daggula Mallikarjuna Reddy
a   Department of Chemistry, National Chung Hsing University, Taichung, Taiwan 402, Taiwan   Email: cfalee@dragon.nchu.edu.tw
,
Chin-Fa Lee*
a   Department of Chemistry, National Chung Hsing University, Taichung, Taiwan 402, Taiwan   Email: cfalee@dragon.nchu.edu.tw
› Author Affiliations
Further Information

Publication History

Received: 29 November 2015

Accepted after revisison: 08.02.02016

Publication Date:
14 March 2016 (online)


Both authors contributed equally to this work.

Abstract

Peracetic acid promoted C–Se coupling reaction of arenes with diselenides under metal-free and solvent-free conditions has been described. The resulting selenide ethers were obtained in good to excellent yields. Peracetic acid provided the selenide ethers via sp2 C–H selenation whereas previously in case of DTBP sp3 C–H selenation was observed.

Supporting Information

 
  • References and Notes

    • 1a Shamberger RJ In Biochemistry of Selenium . Plenum Press; New York: 1983
    • 1b Klayman DL, Gunter HH In Organoselenium Compounds: Their Chemistry and Biology: Wiley-Interscience: New York, 1973 .
    • 1c Rotruck JT, Pope AL, Ganther HE, Swanson AB, Hafeman DG, Hoekstra WG. Science 1973; 179: 588
    • 1d Flohe L, Gunzler EA, Schock HH. FEBS Lett. 1973; 32: 132
    • 1e Flohe L, Andreesen JR, Brigelius-Flohe R, Maiorino M, Ursini F. IUBMB Life 2000; 49: 411
    • 1f Jacob C, Giles GI, Giles NM, Sies H. Angew. Chem. Int. Ed. 2003; 42: 4742
    • 1g Sarma BK, Mugesh G. Org. Biomol. Chem. 2008; 6: 965
    • 1h Nogueira CW, Zeni G, Rocha JB. T. Chem. Rev. 2004; 104: 6255
    • 1i Mugesh G, du Mont WW, Sies H. Chem. Rev. 2001; 101: 2125
    • 1j Mugesh G, Singh H. Chem. Soc. Rev. 2000; 29: 347
    • 1k Patani GA, LaVoie EJ. Chem. Rev. 1996; 96: 3147
    • 1l Abdo M, Zhang Y, Schramm VL, Knapp S. Org. Lett. 2010; 12: 2982
    • 2a Braga AL, Barcellos T, Paixao MW, Deobald AM, Godoi M, Stefani HA, Cella R, Sharma A. Organometallics 2008; 27: 4009
    • 2b Perin G, Lenardao EJ, Jacob RG, Panatieri RB. Chem. Rev. 2009; 109: 1277
    • 3a Fukuzawa S.-i, Tsudsuki K. Tetrahedron: Asymmetry 1995; 6: 1039
    • 3b Wirth T. Tetrahedron Lett. 1995; 36: 7849
    • 3c Braga AL, Vargas F, Sehnem JA, Braga RC. J. Org. Chem. 2005; 70: 9021
    • 3d Zielinska-Blajet M, Siedlecka R, Skarzewski J. Tetrahedron: Asymmetry 2007; 18: 131
    • 3e Schwab RS, Soares LC, Dornelles L, Rodrigues OE. D, Paixao MW, Godoi M, Braga AL. Eur. J. Org. Chem. 2010; 3574
    • 3f Vargas F, Sehnem JA, Galetto FZ, Braga AL. Tetrahedron 2008; 64: 392
    • 3g Wirth T, Kulicke KJ, Fragale G. Helv. Chim. Acta 1996; 79: 1957
    • 3h Wojaczynska E, Skazewski J. Tetrahedron: Asymmetry 2008; 19: 593

      For reviews, see:
    • 4a Wirth T. Tetrahedron 1999; 55: 1
    • 4b Wirth T. Angew. Chem. Int. Ed. 2000; 39: 3740
    • 4c Braga AL, Ludtke DS, Vargas F, Braga RC. Synlett 2006; 1453
    • 4d Braga AL, Ludtke DS, Vargas F, Braga RC. Curr. Org. Chem. 2006; 10: 1921
    • 4e Godoi M, Paixao MW, Braga AL. Dalton Trans. 2011; 40: 11347
    • 5a Freudendahl DM, Iwaoka M, Wirth T. Eur. J. Org. Chem. 2010; 3934
    • 5b Zhao L, Li Z, Wirth T. Eur. J. Org. Chem. 2011; 176
    • 5c Shahzad SA, Vivant C, Wirth T. Org. Lett. 2010; 12: 1364
    • 5d Braga AL, Zeni G, Andrade LH, Silveira CC. Synlett 1997; 595
    • 5e Browne DM, Niyomura O, Wirth T. Org. Lett. 2007; 9: 3169
    • 5f Tiecco M, Testaferri L, Tingoli M, Bagnoli L, Santi C. Synlett 1993; 798
    • 6a Wirth T. Topics in Current Chemistry in Organoselenium Chemistry. Springer; Heidelberg: 2000: 208
    • 6b Krief A In Comprehensive Organometallic Chemistry II . Vol. 11. Abel EV, Stone FG. A, Wilkinson G. Chap. 13 Pergamon Press; New York: 1995: 515
    • 6c Paulmier C In Selenium Reagents and Intermediates in Organic Synthesis, Organic Chemistry Series 4. Baldwin JE. Pergamon Press; Oxford: 1986
    • 7a Keck GE, Grier MC. Synlett 1999; 1657
    • 7b Chen C, Crich D, Papadatos A. J. Am. Chem. Soc. 1992; 114: 8313
    • 7c Boger DL, Mathvink RJ. J. Org. Chem. 1992; 57: 1429
    • 7d Hiiro T, Morita Y, Inoue T, Kambe N, Ogawa A, Ryuand I, Sonoda N. J. Am. Chem. Soc. 1990; 112: 455
    • 7e Sviridov AF, Erolenko MS, Yashunky DV, Kochetkov NK. Tetrahedron Lett. 1983; 24: 4355
    • 8a Heppke G, Martens J, Praefcke K, Simon H. Angew. Chem., Int. Ed. Engl. 1977; 16: 318
    • 8b Yamada J.-i, Akutsu H, Nishikawa H, Kikuchi K. Chem. Rev. 2004; 104: 5057
    • 9a Inoue M, Yamahita S, Ishihara Y, Hirama M. Org. Lett. 2006; 8: 5805
    • 9b Martin SF, Chen KX, Eary CT. Org. Lett. 1999; 1: 79
    • 10a Stadman TC. Annu. Rev. Biochem. 1996; 65: 83
    • 10b Muttenthaler M, Alewood PF. J. Pept. Chem. 2008; 14: 1223
    • 11a Testaferri L, Tiecco M, Tingoli M, Chianelli D, Montanucci M. Synthesis 1983; 751
    • 11b Suzuki H, Abe H, Suka V. Chem. Lett. 1981; 151
    • 11c Pierini AB, Rossi RA. J. Org. Chem. 1979; 44: 4667
    • 11d Rossi RA, Penenory AB. J. Org. Chem. 1981; 46: 4580
    • 11e Grieco PA, Gilman S, Nishizawa M. J. Org. Chem. 1976; 41: 1458
    • 12a Itoh T, Mase T. Org. Lett. 2004; 6: 4587
    • 12b Murata M, Buchwald SL. Tetrahedron 2004; 60: 7397
    • 12c Mispelaere-Canivet C, Spindler JF, Perrio S, Beslin P. Tetrahedron 2005; 61: 5253
    • 12d Fernandez-Rodriguez MA, Shen QL, Hartwig JF. J. Am. Chem. Soc. 2006; 128: 2180
    • 13a Cristau HJ, Chabaud B, Labaudiniere R, Christol H. Organometallics 1985; 4: 657
    • 13b Percec V, Bae JY, Hill DH. J. Org. Chem. 1995; 60: 6895
    • 14a Beletskaya IP, Sigeev AS, Peregudov AS, Petrovskii PV. Tetrahedron Lett. 2003; 44: 7039
    • 14b Gujadhur RK, Venkataraman D. Tetrahedron Lett. 2003; 44: 81
    • 14c Taniguchi N, Onami T. J. Org. Chem. 2004; 69: 915
    • 14d Kumar S, Engman L. J. Org. Chem. 2006; 71: 5400
    • 14e Alves D, Santos CG, Paixao MW, Soares LC, de Souza D, Rodrigues OE. D, Braga AL. Tetrahedron Lett. 2009; 50: 6635
    • 14f Saha A, Saha D, Ranu BC. Org. Biomol. Chem. 2009; 7: 1652
    • 14g Singh D, Alberto EE, Rodrigues OE. D, Braga AL. Green Chem. 2009; 11: 1521
    • 14h Bhadra S, Saha A, Ranu BC. J. Org. Chem. 2010; 75: 4864
    • 15a Correa A, Carril M, Bolm C. Angew. Chem. Int. Ed. 2008; 47: 2880
    • 15b Wu WY, Wang JC, Tsai FY. Green Chem. 2009; 11: 326
    • 15c Wang M, Ren K, Wang L. Adv. Synth. Catal. 2009; 351: 1586
    • 15d Lee C.-F, Wu JR, Lin CH. Chem. Commun. 2009; 4450
    • 16a Narayanaperumal S, Alberto EE, de Andrade FM, Lenardao EJ, Taube PS, Braga AL. Org. Biomol. Chem. 2009; 7: 4647
    • 16b Wang L, Ren K, Wang M. Org. Biomol. Chem. 2009; 7: 4858
    • 17a Bieber LW, de Sa AC. P. F, Menezes PH, Goncalves SM. C. Tetrahedron Lett. 2001; 42: 4597
    • 17b Narayanaperumal S, Alberto EE, Gul K, Kawasoko CY, Dornelles L, Rodrigues OE. D, Braga AL. Tetrahedron 2011; 67: 4723
    • 18a Charushin VS, Chupakhin ON In Metal-Free C–H Functionalization of Aromatic Compounds through the Action of Nucleophilic Reagents. Springer; New York: 2014
    • 18b Sun C.-L, Shi Z.-J. Chem. Rev. 2014; 114: 9219
    • 18c Wang D, Ge B, Li L, Shan J, Ding Y. J. Org. Chem. 2014; 79: 8607
    • 18d Li L, Zhao Y.-L, Wang Q, Lin T, Liu Q. Org. Lett. 2015; 17: 370
    • 19a Badsara SS, Liu Y.-C, Hsieh P.-A, Zeng J.-W, Lu S.-Y, Liu Y.-W, Lee C.-F. Chem. Commun. 2014; 50: 11374
    • 19b Du B, Jin B, Sun P. Org. Lett. 2014; 16: 3032
    • 19c Yuan J, Ma X, Yi H, Liu C, Lei A. Chem. Commun. 2014; 50: 14386
    • 19d Xue Q, Xie J, Li H, Cheng Y, Zhu C. Chem. Commun. 2013; 49: 3700
    • 19e Liou J.-C, Badsara SS, Huang Y.-T, Lee C.-F. RSC Adv. 2014; 4: 41237
    • 19f Zeng J.-W, Liu Y.-C, Hsieh P.-A, Huang Y.-T, Yi C.-L, Badsara SS, Lee C.-F. Green Chem. 2014; 16: 2644
    • 19g Liu D, Lei A. Chem. Asian J. 2015; 10: 806
    • 20a Teicco M, Testaferri L, Bagnoli L, Marini F, Temperini A, Tomassini C, Santi C. Tetrahedron 2000; 56: 3255
    • 20b Prasad CD, Balkrishna SJ, Kumar A, Bhakuni BS, Shrimali K, Biswas S, Kumar S. J. Org. Chem. 2013; 78: 1434
  • 21 General Procedure for a Representative Example: Mesityl(phenyl)selane (3a) A Schlenk tube equipped with a magnetic stir bar was charged with diphenyl diselenide (0.5 mmol, 0.157 g), mesitylene (1.0 mL), and AcOOH (1.0 mmol), then heated at 120 °C in an oil bath under N2 atmosphere. After stirring at this temperature for 24 h, the reaction mixture was cooled to r.t. and diluted with EtOAc (20 mL). The resulting solution was directly filtered through a pad of Celite then washed with EtOAc (20 mL) and concentrated to give the crude material which was then purified by column chromatography (SiO2, hexane) to provide 3a as a yellow oil (248 mg, 94% yield). 1H NMR (400 MHz, CDCl3): δ = 2.30 (s, 3 H), 2.43 (s, 6 H), 6.99 (s, 2 H), 7.06–7.13 (m, 5 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 21.0, 24.2, 125.3, 128.4, 128.8, 128.9, 129.1, 133.4, 139.0, 143.6 ppm. 77Se NMR (114.45 MHz, CDCl3): δ = 286.3 ppm. HRMS (EI): m/z calcd for C15H16Se: 276.0417; found: 276.0407.