Synlett 2016; 27(10): 1531-1536
DOI: 10.1055/s-0035-1561410
letter
© Georg Thieme Verlag Stuttgart · New York

A Straightforward Protocol for the Synthesis of Functionalized Tryptophan Peptides via Stille Coupling, Azidation and Photoinduced Nitrene Insertion

Lukas Junk
Institut für Organische Chemie, Universität des Saarlandes, 66123 Saarbrücken, Germany   Email: u.kazmaier@mx.uni-saarland.de
,
Uli Kazmaier*
Institut für Organische Chemie, Universität des Saarlandes, 66123 Saarbrücken, Germany   Email: u.kazmaier@mx.uni-saarland.de
› Author Affiliations
Further Information

Publication History

Received: 07 January 2016

Accepted after revision: 11 February 2016

Publication Date:
15 March 2016 (online)


Abstract

Substituted and functionalized tryptophans are interesting building blocks in peptidic natural products. Stereoselective allylic alkylations of small peptides using stannylated allylic substrates allow the synthesis of stannylated peptides, which can be subjected to Stille couplings using (substituted) o-iodoanilines. Subsequent azidation and photochemical nitrene insertion allows the direct incorporation of modified tryptophans into peptides.

Supporting Information

 
  • References and Notes

    • 1a Galliford CV, Scheidt KA. Angew. Chem. Int. Ed. 2007; 46: 8748
    • 1b Bronner SM, Im GY. J, Garg NK. Heterocycles in Natural Product Synthesis . Majumdar KC, Chattopadhyay SK. Wiley-VCH; Weinheim: 2011: 221
  • 2 Jakubczyk D, Cheng JZ, O’Connor SE. Nat. Prod. Rep. 2014; 31: 1328
    • 3a Pedras MS, Yaya EE, Glawischnig E. Nat. Prod. Rep. 2011; 28: 1381
    • 3b Xu W, Gavia DJ, Tang Y. Nat. Prod. Rep. 2014; 31: 1474
  • 4 Fusetani N, Matsunaga S. Chem. Soc. Rev. 1963; 93: 1793
    • 5a Kunze B, Jansen R, Sasse F, Höfle G, Reichenbach H. J. Antibiot. 1995; 48: 1262
    • 5b Jansen R, Kunze B, Reichenbach H, Höfle G. Liebigs Ann. 1996; 285
    • 6a Clark WD, Corbett T, Valeriote F, Crews P. J. Am. Chem. Soc. 1997; 119: 9285
    • 6b Rubio BK, Robinson SJ, Avalos CE, Valeriote FA, de Voogd NJ, Crews P. J. Nat. Prod. 2008; 71: 1475
    • 6c Garcia JM, Curzon SS, Watts KR, Konopelski JP. Org. Lett. 2012; 14: 2054
  • 7 Plaza A, Keffer JL, Lloyd JR, Colin PL, Bewley CA. J. Nat. Prod. 2010; 73: 485
    • 8a Phillips RS, Cohen LA. J. Am. Chem. Soc. 1986; 108: 2023
    • 8b Miyake FY, Yakushijn K, Horne DA. Angew. Chem. Int. Ed. 2004; 43: 5357
    • 9a Trzupek JD, Lee D, Crowley BM, Marathias VM, Danishefsky SJ. J. Am. Chem. Soc. 2010; 132: 8506
    • 9b Jiang D, Xu Z, Jia Y. Tetrahedron 2012; 68: 4225
    • 9c Xu M, Fan T.-Y, Zhang J.-X, Hao X.-J, Liu S. Chin. Chem. Lett. 2015; 26: 282
    • 10a Ruiz-Rodriguez J, Albericio F, Lavilla R. Chem. Eur. J. 2010; 16: 1124
    • 10b Preciado S, Mendive-Tapia L, Albericio F, Lavilla R. J. Org. Chem. 2013; 78: 8129
    • 10c Potukuchi HK, Bach T. J. Org. Chem. 2013; 78: 12263
    • 10d Williams TJ, Reay AJ, Whitwood AC, Fairlamb IJ. S. Chem. Commun. 2014; 50: 3052
    • 11a Bittner S, Schwerzer R, Harlev E. Amino Acids 2007; 33: 19
    • 11b Frese M, Guzowska PH, Voß H, Sewald N. ChemCatChem 2014; 6: 1270
    • 11c Frese M, Sewald N. Angew. Chem. Int. Ed. 2015; 54: 298
    • 11d Tanner ME. Nat. Prod. Rep. 2015; 32: 88
  • 12 Liu Q, Li Q, Ma Y, Jia Y. Org. Lett. 2013; 15: 4528
  • 13 Gribble GW. J. Chem. Soc., Perkin Trans. 1 2000; 1045

    • Selected recent reviews:
    • 14a Krüger K, Tillack A, Beller M. Adv. Synth. Catal. 2008; 350: 2153
    • 14b Barluenga J, Rodriguez F, Fananas J. Chem. Asian J. 2009; 4: 1036
    • 14c Bandini M, Eichholzer A. Angew. Chem. Int. Ed. 2009; 48: 9608
    • 14d Song JJ, Reeves JT, Fandrick DR, Tan Z, Yee NK, Senanayake CH. ARKIVOC 2010; (i): 390
    • 14e Cacchi S, Fabrizi G, Goggiamani A. Org. Biomol. Chem. 2011; 9: 641
    • 15a Ackermann L, Kaspar LT, Gschrei CJ. Chem. Commun. 2004; 2824
    • 15b Ackermann L, Sandmann R, Villar A, Kaspar LT. Tetrahedron 2008; 64: 769
    • 15c Gao D, Back TG. Chem. Eur. J. 2012; 18: 14828
  • 17 Dacko CA, Akhmedov NG, Söderberg BC. G. Tetrahedron: Asymmetry 2008; 19: 2775
    • 18a Mothes C, Lavielle S, Karoyan P. J. Org. Chem. 2008; 73: 6706
    • 18b Tanaka M, Hikawa H, Yokoyama Y. Tetrahedron 2011; 67: 5897
    • 19a Gander-Coquoz M, Seebach D. Helv. Chim. Acta 1988; 71: 224
    • 19b Zhang L, Finn JM. J. Org. Chem. 1995; 60: 5719
    • 19c Zhang P, Liu R, Cook JM. Tetrahedron Lett. 1995; 36: 9133
    • 19d Gan T, Liu R, Yu P, Zhao S, Cook JM. J. Org. Chem. 1997; 62: 9298
    • 19e Ma C, Liu X, Li X, Flippen-Anderson J, Yu S, Cook JM. J. Org. Chem. 2001; 66: 4525
    • 19f Zhou H, Liao X, Cook JM. Org. Lett. 2004; 6: 249
    • 19g Okada M, Sato I, Cho SJ, Suzuki Y, Ojika M, Dubnau D, Sakagami Y. Biosci., Biotechnol., Biochem. 2004; 68: 2374
    • 19h Bittner S, Scherzer R, Harlev E. Amino Acids 2007; 33: 19
    • 19i Edwankar CR, Edwankar RV, Namjoshi OA, Liao X, Cook JM. J. Org. Chem. 2013; 78: 6471
    • 20a Schmidt U, Wild J. Liebigs Ann. Chem. 1985; 1882
    • 20b Yokoyama Y, Matsumoto T, Murakami Y. J. Org. Chem. 1995; 60: 1486
    • 20c Yokoyama Y, Hikawa H, Mitsuhashi M, Uyama A, Hiroki Y, Murakami Y. Eur. J. Org. Chem. 2004; 1244
  • 21 Kazmaier U In Frontiers in Asymmetric Synthesis and Application of alpha-Amino Acids . Soloshonok VA, Izawa K. ACS Books; Washington: 2009: 157
  • 23 Grandel R, Kazmaier U. Tetrahedron Lett. 1997; 38: 8009
    • 24a Pohlman M, Kazmaier U. Org. Lett. 2003; 5: 2631
    • 24b Pohlman M, Kazmaier U, Lindner T. J. Org. Chem. 2004; 69: 6909
    • 25a Kazmaier U, Zumpe FL. Angew. Chem. Int. Ed. 1999; 38: 1468
    • 25b Kazmaier U, Zumpe FL. Angew. Chem. Int. Ed. 2000; 39: 802
    • 25c Kazmaier U, Lindner T. Angew. Chem. Int. Ed. 2005; 44: 3303
    • 25d Kazmaier U, Stolz D. Angew. Chem. Int. Ed. 2006; 45: 3072
    • 25e Kazmaier U, Stolz D, Krämer K, Zumpe F. Chem. Eur. J. 2008; 14: 1322
    • 26a Kazmaier U, Schauß D, Raddatz S, Pohlman M. Chem. Eur. J. 2001; 7: 456
    • 26b Bukovec C, Wesquet AO, Kazmaier U. Eur. J. Org. Chem. 2011; 1047
    • 28a Kazmaier U, Deska J, Watzke A. Angew. Chem. Int. Ed. 2006; 45: 4855
    • 28b Datta S, Kazmaier U. Org. Biomol. Chem. 2011; 9: 872
    • 28c Datta S, Bayer A, Kazmaier U. Org. Biomol. Chem. 2012; 10: 8268
  • 30 Kazmaier U, Schauß D, Pohlman M, Raddatz S. Synthesis 2000; 914
    • 31a Mee SP. H, Lee V, Baldwin JE. Angew. Chem. Int. Ed. 2004; 43: 1132
    • 31b Mee SP. H, Lee V, Baldwin JE. Chem. Eur. J. 2005; 11: 3294
    • 32a Crisp GT, Glink PT. Tetrahedron Lett. 1992; 33: 4649
    • 32b Crisp GT, Glink PT. Tetrahedron Lett. 1994; 50: 3213
  • 33 Han X, Stoltz BM, Corey EJ. J. Am. Chem. Soc. 1999; 121: 7600
  • 34 Stille Couplings; General Procedure 1: An oven-dried Schlenk tube was charged with LiCl (2.0 equiv) and heated with a heat gun under vacuum (< 0.1 mbar). After cooling to room temperature, CuI (2.0 equiv), (substituted) o-iodoaniline (1.0 equiv) and Pd(PPh3)4 (5 mol%) were added and the flask was evacuated and refilled with Ar three times. DMF (10 mL/mmol), which was previously degassed by bubbling with Ar, and the organotin compound (1.2 equiv) were added and the mixture was heated to 80 °C for 18 h. Upon reaching full conversion (TLC analysis), the mixture was diluted with EtOAc and 1 M KF solution (5 mL/mmol) was added. Upon vigorous shaking (in the Schlenk tube) a colourless precipitate formed and the mixture was filtered through a pad of Celite with EtOAc. The layers were separated and the aqueous layer was extracted twice with EtOAc. The combined organic layers were dried over Na2SO4, filtered and concentrated. The residue was purified by (automated) flash chromatography. tert-Butyl N-Trifluoroacetyl-2-amino-4-(2-amino-5-ethoxycarbonylphenyl)pent-4-enoate (3c): According to General Procedure 1, 3-iodobenzocaine (73 mg, 0.250 mmol) was reacted with 1 (176 mg, 0.300 mmol, 96% purity), LiCl (21 mg, 0.500 mmol), CuI (95 mg, 0.500 mmol) and Pd(PPh3)4 (14 mg, 12.5 µmol). Flash chromatography (PE–EtOAc, 80:20) afforded aniline 3c (71 mg, 0.164 mmol, 66%) as a brown solid; mp 151–152 °C; Rf = 0.34 (PE–EtOAc, 70:30). 1H NMR (400 MHz, CDCl3): δ = 1.36 (t, J = 7.1 Hz, 3 H), 1.43 (s, 9 H), 2.93 (dd, J = 14.3, 5.3 Hz, 1 H), 3.12 (ddd, J = 14.3, 5.4, 0.7 Hz, 1 H), 4.25 (br s, 2 H), 4.32 (q, J = 7.1 Hz, 2 H), 4.56 (m, 1 H), 5.27 (d, J = 1.5 Hz, 1 H), 5.40 (m, 1 H), 6.68 (d, J = 8.4 Hz, 1 H), 7.06 (d, J = 7.29 Hz, 1 H), 7.69 (d, J = 2.0 Hz, 1 H), 7.77 (dd, J = 8.4, 2.0 Hz, 1 H). 13C NMR (100 MHz, CDCl3): δ = 14.4, 27.9, 39.0, 52.5, 60.4, 83.6, 115.1, 120.2, 120.4, 125.7, 130.5, 130.6, 141.1, 147.3, 166.4, 169.0 ppm. Signals of the TFA group could not be observed. HRMS (CI): m/z [M]+ calcd for C20H25F3N2O5: 430.1710; found: 430.1674. tert-Butyl N-Trifluoroacetyl-(S)-phenylalanyl-(R)-2-amino-4-(2-aminophenyl)pent-4-enoate (6c): According to General Procedure 1, 2-iodoaniline (42 mg, 0.191 mmol) was reacted with 5b (156 mg, 0.222 mmol), LiCl (16 mg, 0.370 mmol), CuI (71 mg, 0.370 mmol) and Pd(PPh3)4 (11 mg, 9 µmol). Column chromatography (PE–EtOAc, 70:30) afforded aniline 6c (83 mg, 0.170 mmol, 86%) as a brown solid; mp 57–59 °C; Rf = 0.24 (PE–EtOAc, 70:30); [α]D 20 = –23.0 (c 1.3, CHCl3). 1H NMR (400 MHz, CDCl3): δ = 1.42 (s, 9 H), 2.73–2.92 (m, 4 H, 4-H), 3.83 (br s, 2 H), 4.46–4.54 (m, 2 H), 5.15 (d, J = 1.8 Hz, 1 H), 5.26 (m, 1 H), 6.68 (d, J = 8.3 Hz, 1 H), 6.71 (dd, J = 8.0, 1.0 Hz, 1 H), 6.76 (ddd, J = 7.5, 7.5, 1.1 Hz, 1 H), 6.96 (dd, J = 7.6, 1.5 Hz, 1 H), 7.02–7.09 (m, 4 H), 7.23–7.29 (m, 3 H). 13C NMR (100 MHz, CDCl3): δ = 28.0, 37.8, 39.4, 52.5, 54.3, 82.6, 116.3, 119.0, 119.4, 127.3, 127.9, 128.6, 128.7, 128.7, 129.3, 135.2, 142.3, 142.6, 156.5 (2 J F = 37.5 Hz), 168.4, 169.7. The signal of the CF3 group could not be observed. HRMS (CI): m/z [M + H]+ calcd for C26H31F3N3O4: 506.2261; found: 506.2263.
  • 35 Diazotation/Azidation of Anilines; General Procedure 2: The aniline derivative was dissolved in a mixture of MeCN and 0.5 M HCl (1:1, 0.05 M). Subsequently, NaNO2 (1.6 equiv) was added at 0 °C. After stirring for 5 min, NaN3 (1.6 equiv) was added. After stirring for 5 min, sat. NaHCO3 solution was added and the aqueous phase was extracted three times with CH2Cl2. The organic layer was dried over Na2SO4, concentrated, and the residue was purified by (automated) flash chromatography. tert-Butyl N-Trifluoroacetyl-2-amino-4-(2-azido-5-ethoxycarbonylphenyl)pent-4-enoate (2c): According to General Procedure 2, 3c (55 mg, 0.128 mmol) was reacted with NaNO2 (14 mg, 0.204 mmol) and NaN3 (13.3 mg, 0.204 mmol). Automated flash chromatography (PE–EtOAc, 100:0 to 90:10) afforded azide 2c (46 mg, 0.101 mmol, 79%) as a colourless resin; Rf = 0.19 (PE–EtOAc, 90:10). 1H NMR (400 MHz, CDCl3): δ = 1.39 (t, J = 7.1 Hz, 3 H), 1.40 (s, 9 H), 2.99 (dd, J = 14.6, 6.0 Hz, 1 H), 3.21 (dd, J = 14.6, 5.8 Hz, 1 H), 4.37 (q, J = 7.1 Hz, 2 H), 4.44 (m, 1 H), 5.19 (d, J = 0.9 Hz, 1 H), 5.31 (d, J = 0.9 Hz, 1 H), 6.84 (d, J = 7.1 Hz, 1 H), 7.18 (d, J = 8.4 Hz, 1 H), 7.83 (d, J = 2.0 Hz, 1 H), 8.01 (dd, J = 8.4, 2.0 Hz, 1 H). 13C NMR (100 MHz, CDCl3): δ = 14.3, 27.8, 38.1, 52.1, 61.2, 83.4, 118.2, 121.2, 127.1, 130.5, 131.8, 132.6, 141.0, 141.7, 165.5, 169.0. Signals of the TFA group could not be observed. HRMS (CI): m/z [M – N2]+ calcd for C20H23F3N2O5: 428.1554; found: 428.1544. tert-Butyl N-Trifluoroacetyl-(S)-phenylalanyl-(R)-2-amino-4-(2-azidophenyl)pent-4-enoate (7c): According to General Procedure 2, 6c (64 mg, 0.123 mmol) was reacted with NaNO2 (14 mg, 0.196 mmol) and NaN3 (13 mg, 0.196 mmol). Column chromatography (PE–EtOAc, 80:20) gave azide 7c (59 mg, 0.111 mmol, 90%) as a colourless resin; Rf = 0.31 (PE–EtOAc, 80:20). 1H NMR (400 MHz, CDCl3): δ = 1.36 (s, 9 H), 2.87 (m, 2 H), 2.99 (d, J = 6.8 Hz, 2 H), 4.36 (m, 1 H), 4.57 (m, 1 H), 5.06 (m, 1 H), 5.10 (m, 1 H), 6.01 (d, J = 7.2 Hz, 1 H), 7.06–7.17 (m, 6 H), 7.27–7.35 (m, 4 H). 13C NMR (100 MHz, CDCl3): δ = 27.9, 38.3, 38.8, 52.0, 54.5, 82.6, 118.4, 119.9, 125.0, 127.5, 128.8, 129.2, 129.2, 130.6, 133.1, 135.1, 137.1, 142.3, 168.4, 169.9. Signals of the TFA group could not be observed. HRMS (CI): m/z [M – N2]+ calcd for C26H28F3N3O4: 503.2026; found: 503.2034.
    • 36a Shen M, Leslie BE, Driver TG. Angew. Chem. Int. Ed. 2008; 47: 5056
    • 36b Stokes BJ, Richert KJ, Driver TG. J. Org. Chem. 2009; 74: 6442
    • 36c Sun K, Liu S, Bec PM, Driver TG. Angew. Chem. Int. Ed. 2011; 50: 1702
  • 37 Farney EP, Yoon TP. Angew. Chem. Int. Ed. 2014; 53: 793

    • For photochemical indole syntheses using aryl azides, see:
    • 38a Smith PA. S, Brown BB. J. Am. Chem. Soc. 1952; 73: 2435
    • 38b Sundberg RJ, Russell HF, Ligon WV. Jr, Lin L.-S. J. Org. Chem. 1972; 37: 719
    • 38c Molina P, Alcantara J, Lopez-Leonardo C. Tetrahedron Lett. 1995; 36: 953
    • 38d Leogane O, Lebel H. Angew. Chem. Int. Ed. 2008; 47: 350
    • 38e Bobeck DR, France S, Leverett CA, Sánchez-Cantalejo F, Padwa A. Tetrahedron Lett. 2009; 50: 3145
    • 38f Xia XD, Xuan J, Wang Q, Lu L.-Q, Chen JR, Xiao WJ. Adv. Synth. Catal. 2014; 356: 2807
  • 39 UV-LED Smart from Opsytec Dr. Gröbel GmbH (λ = 365 nm, max. irradiance >25 W·cm–2, beam profile: standard).
  • 40 Photocyclization of Azides; General Procedure 3: The azide was dissolved in MeCN (10 mL/mmol) in a round-bottom flask, which was then wrapped with aluminium foil and irradiated with an UV-LED lamp at 25% (6.25 W·cm–2) of the maximum irradiance for the specified time at room temperature under laboratory atmosphere (Figure 1). The solvent was removed by evaporation and the residue was purified by (automated) flash chromatography. tert-Butyl N-Trifluoroacetyl-(5-ethoxycarbonyl)tryptophanate (4c): According to General Procedure 3, azide 2c (45 mg, 98.6 µmol) was irradiated for 13 h. Automated flash chromatography (PE–EtOAc, 100:0 to 80:20) afforded indole 4c (30 mg, 70.0 μmol, 71%) as a colourless solid; mp 119–120 °C; Rf = 0.14 (PE–EtOAc, 80:20). 1H NMR (400 MHz, CDCl3): δ = 1.40 (s, 9 H), 1.41 (t, J = 7.1 Hz, 3 H), 3.41 (m, 2 H), 4.40 (q, J = 7.1 Hz, 2 H), 4.82 (m, 1 H), 6.96 (d, J = 7.1 Hz, 1 H), 7.07 (d, J = 2.2 Hz, 1 H), 7.36 (d, J = 8.6 Hz, 1 H), 7.93 (dd, J = 8.6, 1.4 Hz, 1 H), 8.34 (s, 1 H), 8.47 (br s, 1 H). 13C NMR (100 MHz, CDCl3): δ = 14.4, 26.7, 27.8, 53.7, 60.7, 83.7, 110.8, 111.0, 121.5, 122.2, 123.9, 124.1, 127.1, 138.5, 167.5, 169.2. Signals of the TFA group could not be observed. HRMS (CI): m/z [M]+ calcd for C20H23F3N2O5: 428.1554; found: 428.1569. tert-Butyl N-Trifluoroacetyl-(S)-phenylanalyl-(R)-tryptophanate (8c): According to General Procedure 3, azide 7c (42 mg, 79.0 μmol) was irradiated for 11.5 h. Column chromatography (PE–EtOAc, 70:30) gave dipeptide 8c (33 mg, 65.5 μmol, 83%) as a colourless solid; mp 178–179 °C. Diastereomeric ratio: (S,R)-8c/(S,S)-8c = 96:4; Rf = 0.26 (PE–EtOAc, 70:30). [α]D 20 = +26.3 (c 1.0, DMF). 1H NMR (400 MHz, CD3OD): δ = 1.37 (s, 9 H), 2.78 (dd, J = 13.8, 8.8 Hz, 1 H), 2.95 (dd, J = 13.8, 5.9 Hz, 1 H), 3.04 (dd, J = 14.6, 8.5 Hz, 1 H), 3.22 (dd, J = 14.6, 5.9 Hz, 1 H), 4.60 (m, 1 H), 4.71 (m, 1 H), 7.00–7.05 (m, 3 H), 7.10 (m, 1 H), 7.14–7.16 (m, 3 H), 7.33 (d, J = 8.0 Hz, 1 H), 7.54 (d, J = 7.8 Hz, 1 H). Signals of N-H protons could not be observed. 13C NMR (100 MHz, CD3OD): δ = 28.1, 28.5, 38.6, 55.5, 56.0, 82.9, 110.8, 112.3, 119.3, 119.8, 122.5, 124.5, 127.9, 128.7, 129.4, 130.2, 137.5, 138.1, 171.7, 172.4. Signals of the TFA group could not be observed. HPLC (Repropsil 100 Chiral-NR 8 μm (250 × 4.6 mm), hexane–i-PrOH, 90:10 (5 min), 90:10 to 70:30 (10 min), 70:30 (15 min); 1 mL/min): tR = 11.20 [(S,S)-8c], 12.76 [(S,R)-8c] min. HRMS (CI): m/z [M + H]+ calcd for C26H29F3N3O4: 504.2105; found: 504.2096.
    • 41a Shuttleworth SJ, Lizarzaburu ME, Chai A, Coward P. Bioorg. Med. Chem. Lett. 2004; 4: 3037
    • 41b Farmanzadeh D, Najafi M. Bull. Chem. Soc. Jpn. 2013; 86: 1041