Synthesis 2016; 48(15): 2361-2375
DOI: 10.1055/s-0035-1561454
short review
© Georg Thieme Verlag Stuttgart · New York

The Chemistry of Unusually Functionalized Azides

Klaus Banert*
Technische Universität Chemnitz, Organic Chemistry, Strasse der Nationen 62, 09111 Chemnitz, Germany   Email: klaus.banert@chemie.tu-chemnitz.de
› Author Affiliations
Further Information

Publication History

Received: 11 April 2016

Accepted: 18 April 2016

Publication Date:
07 June 2016 (online)


Dedicated to Professor Heinrich Lang on the occasion of his 60th birthday

Abstract

This short review describes the synthesis and reactions of organic azides bearing an adjacent additional functional group, such as azidoacetylenes, α-azido alcohols, geminal azidohalo compounds, formyl azide, 1,1-diazidoethenes, and azidocyclopentadienes. Some of these compounds were extensively investigated in previous quantum chemical studies, but experimental access was missing until quite recently; other such azides were simply overlooked for a long time. The title compounds are able to undergo a variety of intramolecular and intermolecular subsequent reactions, which can find application in synthetic chemistry.

1 Introduction

2 Ethynyl Azides

3 Geminal Azidohalo Compounds and α-Azido Alcohols

3.1 Azidohalomethanes

3.2 Discovery and Synthesis of α-Azido Alcohols

3.3 Reactions of α-Azido Alcohols

4 Formyl Azide

5 1,1-Diazidoethenes

6 Azidocyclopentadienes

7 Conclusion and Outlook

 
  • References

    • 1a Organic Azides, Syntheses and Applications . Bräse S, Banert K. Wiley; Chichester: 2010
    • 1b Bräse S, Gil C, Knepper K, Zimmermann V. Angew. Chem. Int. Ed. 2005; 44: 5188 ; Angew. Chem. 2005, 117, 5320
    • 1c Scriven EF. V, Turnbull K. Chem. Rev. 1988; 88: 297
    • 1d Azides and Nitrenes . Scriven EF. V. Academic Press; Orlando: 1984
    • 1e The Chemistry of the Azido Group . Patai S. Wiley; London: 1971
  • 2 Kyba EP In Azides and Nitrenes . Scriven EF. V. Academic Press; Orlando: 1984: 1-34
  • 3 Smith PA. S In Azides and Nitrenes . Scriven EF. V. Academic Press; Orlando: 1984: 95-204
    • 4a Banert K In Organic Azides, Syntheses and Applications . Bräse S, Banert K. Wiley; Chichester: 2010: 115-166
    • 4b Collier SJ In Science of Synthesis . Vol. 33. Molander GA. Thieme; Stuttgart: 2006: 541-563
    • 4c Banert K In Houben–Weyl . 4th ed., Vol. E15; Kropf H, Schaumann E. Thieme; Stuttgart: 1993: 818-875
    • 4d Hassner A In Azides and Nitrenes . Scriven EF. V. Academic Press; Orlando: 1984: 35-94
    • 4e L’abbé G. Angew. Chem., Int. Ed. Engl. 1975; 14: 755 ; Angew. Chem. 1975, 87, 831
    • 4f Smolinsky G, Pryde CA In The Chemistry of the Azido Group . Patai S. Wiley; New York: 1971: 555-585
    • 4g L’abbé G, Hassner A. Angew. Chem., Int. Ed. Engl. 1971; 10: 98 ; Angew. Chem. 1971, 83, 103
    • 5a Lwowski W In Azides and Nitrenes . Scriven EF. V. Academic; Orlando: 1984: 205-246
    • 5b Lwowski W In The Chemistry of the Azido Group . Patai S. Wiley; New York: 1971: 503-554
  • 6 Banert K In Houben–Weyl . 4th ed., Vol. E15; Kropf H, Schaumann E. Thieme; Stuttgart: 1993: 3105-3107
  • 7 Forster MO, Newman SH. J. Chem. Soc. 1910; 97: 2570
  • 8 Banert K, Berndt C, Firdous S, Hagedorn M, Joo Y.-H, Rüffer T, Lang H. Angew. Chem. Int. Ed. 2010; 49: 10206 ; Angew. Chem. 2010, 122, 10404
  • 9 Banert K In Science of Synthesis . Vol. 24. de Meijere A. Thieme; Stuttgart: 2006: 1059-1072
    • 10a Tanaka R, Yamabe K. J. Chem. Soc., Chem. Commun. 1983; 329
    • 10b Yamabe K, Tanaka R. Sasebo Kogyo Koto Senmon Gakko Kenkyu Hokoku 1985; 22: 119 ; Chem. Abstr. 1987, 106, 49680t
  • 11 Banert K, Hagedorn M, Wutke J, Ecorchard P, Schaarschmidt D, Lang H. Chem. Commun. 2010; 46: 4058
  • 12 Breslow R, Yuan C. J. Am. Chem. Soc. 1958; 80: 5991
  • 13 Prochnow E, Auer AA, Banert K. J. Phys. Chem. A 2007; 111: 9945

    • For other quantum chemical calculations to characterize ethynyl azides, see:
    • 14a Politzer P, Lane P, Sjoberg P, Grice ME, Shechter H. Struct. Chem. 1995; 6: 217
    • 14b Golovin AV, Takhistov VV. J. Mol. Struct. 2004; 701: 57

      For reviews, see:
    • 15a Stang PJ, Zhdankin VV. Chem. Rev. 1996; 96: 1123
    • 15b Zhdankin VV, Stang PJ. Tetrahedron 1998; 54: 10927
    • 15c Zhdankin VV, Stang PJ. Chem. Rev. 2008; 108: 5299
    • 15d Stang PJ. J. Org. Chem. 2003; 68: 2997
    • 15e Kirmse W. Angew. Chem., Int. Ed. Engl. 1997; 36: 1164 ; Angew. Chem. 1997, 109, 1212
  • 16 Kitamura T, Stang PJ. Tetrahedron Lett. 1988; 29: 1887
  • 17 Review: Banert K. Synthesis 2007; 3431
  • 18 Moss RA, Kmiecik-Ławrynowicz G, Cox DP. Synth. Commun. 1984; 14: 21
  • 19 Banert K, Arnold R, Hagedorn M, Thoss P, Auer AA. Angew. Chem. Int. Ed. 2012; 51: 7515 ; Angew. Chem. 2012, 124, 7633
    • 20a Fox DP, Stang PJ, Apeloig Y, Karni M. J. Am. Chem. Soc. 1986; 108: 750
    • 20b Ochiai M, Sueda T, Uemura K, Masaki Y. J. Org. Chem. 1995; 60: 2624
    • 20c Lee H.-Y, Lee Y.-H. Synlett 2001; 1656
    • 21a Martel J, Tessier J, Demoute J.-P. FR 2479192, 1981 ; Chem. Abstr. 1982, 96, 85115.
    • 21b Moss RA, Zheng F, Krogh-Jespersen K. Org. Lett. 2001; 3: 1439
  • 22 Caution ! The azide 4a is a high volatile and explosive compound that can be safely used in cold solution. However, recondensation under reduced pressure can lead to an explosion (protective shield). The explosive properties of 4a are similar to those of diazomethane. For potential hazards in handling hydrazoic acid and organic azides, see: Keicher T, Löbbecke S. In Organic Azides: Syntheses and Applications . Bräse S, Banert K. Wiley; Chichester: 2010: 3-27
  • 23 Banert K, Lehmann J, Quast H, Meichsner G, Regnat D, Seiferling B. J. Chem. Soc., Perkin Trans. 2 2002; 126
  • 24 Banert K, Hagedorn M, Wu Z, Zeng X. Molecules 2015; 20: 21328
  • 25 Sebald A, Wrackmeyer B. Spectrochim. Acta, Part A 1981; 37: 365
  • 26 Zeng X, Beckers H, Seifert J, Banert K. Eur. J. Org. Chem. 2014; 4077
  • 27 Oschetzki D, Zeng X, Beckers H, Banert K, Rauhut G. Phys. Chem. Chem. Phys. 2013; 15: 6719
  • 28 Maier G, Reisenauer HP, Rademacher K. Chem. Eur. J. 1998; 4: 1957 ; and references cited therein
    • 29a Banert K In Science of Synthesis Knowledge Updates . Vol. 2015/2. Aitken RA, Brøndsted Nielsen M, Drabowicz J, Li JJ, Plietker BJ, Wirth T. Thieme; Stuttgart: 2016: 259-300
    • 29b Jung N, Bräse S. Angew. Chem. Int. Ed. 2012; 51: 12169 ; Angew. Chem. 2012, 124, 12335
    • 29c Hyatt IF. D, Croatt MP. Angew. Chem. Int. Ed. 2012; 51: 7511 ; Angew. Chem. 2012, 124, 7629
    • 29d Hyatt IF. D, Meza-Aviña ME, Croatt MP. Synlett 2012; 23: 2869
    • 29e Hyatt IF. D, Nasrallah DJ, Maxwell MA, Hairston AC. F, Abdalhameed MM, Croatt MP. Chem. Commun. 2015; 51: 5287
    • 29f Banert K, Hagedorn M, Pester T, Siebert N, Staude C, Tchernook I, Rathmann K, Hollóczki O, Friedrich J. Chem. Eur. J. 2015; 21: 14911
    • 30a Hassner A, Stern M. Angew. Chem., Int. Ed. Engl. 1986; 25: 478 ; Angew. Chem. 1986, 98, 479
    • 30b Hassner A, Stern M, Gottlieb HE, Frolow F. J. Org. Chem. 1990; 55: 2304
  • 31 Banert K, Joo Y.-H, Rüffer T, Walfort B, Lang H. Tetrahedron Lett. 2010; 51: 2880
  • 32 Klapötke TM, Krumm B, Scherr M, Steemann FX, Banert K, Joo Y.-H. Chem. Eur. J. 2009; 15: 11341
  • 33 Caution should be exercised during isolation of explosive azides. Especially, 26a,b and 27 are dangerous compounds that should be handled in solution.
  • 34 Birkofer L, Kaiser W. Justus Liebigs Ann. Chem. 1975; 266
    • 35a Richard JP, Amyes TL, Jagannadham V, Lee Y.-G, Rice DJ. J. Am. Chem. Soc. 1995; 117: 5198
    • 35b Richard JP, Amyes TL, Lee Y.-G, Jagannadham V. J. Am. Chem. Soc. 1994; 116: 10833
    • 35c Amyes TL, Richard JP. J. Am. Chem. Soc. 1991; 113: 1867
  • 36 Kalisiak J, Sharpless KB, Fokin VV. Org. Lett. 2008; 10: 3171
    • 37a Nishiyama K, Yamaguchi T. Synthesis 1988; 106
    • 37b Evans DA, Truesdale LK. Tetrahedron Lett. 1973; 14: 4929
    • 37c Birkofer L, Müller F, Kaiser W. Tetrahedron Lett. 1967; 8: 2781
  • 39 Yanai H, Taguchi T. Tetrahedron Lett. 2005; 46: 8639
    • 40a Hassner A, Fibiger R, Amarasekara AS. J. Org. Chem. 1988; 53: 22
    • 40b Kirchmeyer S, Mertens A, Olah GA. Synthesis 1983; 500
    • 40c Hassner A, Fibiger R, Andisik D. J. Org. Chem. 1984; 49: 4237
    • 40d Kyba EP, John AM. Tetrahedron Lett. 1977; 18: 2737
    • 40e Omura M, Iwanami K, Oriyama T. Chem. Lett. 2007; 36: 532
  • 41 Owing to an error of calculation, the wrong value of K = 10.1 ± 1.1 L mol–1 was published for 32a (ref. 8); the corrected value is K = 26.8 ± 2.9 L mol–1.
  • 42 Guthrie JP. J. Am. Chem. Soc. 2000; 122: 5529
    • 43a Boyer JH. J. Am. Chem. Soc. 1951; 73: 5248
    • 43b Davies AJ, Donald AS. R, Marks RE. J. Chem. Soc. C 1967; 2109
    • 43c Szmuszkovicz J, Kane MP, Laurian LG, Chidester CG, Scahill TA. J. Org. Chem. 1981; 46: 3562

      Transformations similar to the reaction 35 → 32w:
    • 44a Gauthier C, Ramondenc Y, Plé G. Tetrahedron 2001; 57: 7513
    • 44b Kim S.-G, Park T.-H. Synth. Commun. 2007; 37: 1027
  • 45 Roesky H, Glemser O. Chem. Ber. 1964; 97: 1710
    • 46a Arote ND, Akamanchi KG. Tetrahedron Lett. 2007; 48: 5661
    • 46b Marinescu L, Thinggaard J, Thomsen IB, Bols M. J. Org. Chem. 2003; 68: 9453
    • 46c Bose DS, Reddy AV. N. Tetrahedron Lett. 2003; 44: 3543
    • 46d Chen D.-J, Chen Z.-C. Tetrahedron Lett. 2000; 41: 7361
    • 46e Lee JG, Kwak KH. Tetrahedron Lett. 1992; 33: 3165
    • 46f Reddy PS, Yadagiri P, Lumin S, Shin D.-S, Falck JR. Synth. Commun. 1988; 18: 545
  • 47 Berndt C. Dissertation . Chemnitz University of Technology; Germany: 2013
  • 48 For a special synthesis of 2-azido-2-haloacetates, see: Takeuchi Y, Takagi K, Yamaba T, Nabetani M, Koizumi T. J. Fluorine Chem. 1994; 68: 149
  • 49 Firdous S. Dissertation . Chemnitz University of Technology; Germany: 2012
  • 50 Weigand, K. unpublished results, Chemnitz University of Technology, Germany.
    • 51a Curtius T. Ber. Dtsch. Chem. Ges. 1890; 23: 3023
    • 51b Curtius T. J. Prakt. Chem. 1894; 50: 275
    • 52a Glover SA, Rauk A. J. Chem. Soc., Perkin Trans. 2 2002; 1740
    • 52b Abu-Eittah RH, Moustafa H, Al-Omar AM. Chem. Phys. Lett. 2000; 318: 276
    • 52c Nielsen CJ, Sjøgren CE. J. Mol. Struct.: THEOCHEM 1987; 150: 361
    • 52d Badawi HM. J. Mol. Struct.: THEOCHEM 2002; 583: 89
    • 52e Kakkar R, Zaidi S, Grover R. Int. J. Quantum Chem. 2009; 109: 1058
    • 52f Abu-Eittah RH, Mohamed AA, Al-Omar AM. Int. J. Quantum Chem. 2006; 106: 863
    • 52g Zabalov MV, Tiger RP. Russ. Chem. Bull. Int. Ed. 2005; 54: 2270
    • 52h Wenyuan X, Gousheng L, Yiyuan P, Sanguo H. Wuli Huaxue Xuebao 1998; 14: 669
    • 52i Rauk A, Alewood PF. Can. J. Chem. 1977; 55: 1498
    • 52j Faustov VI, Baskir EG, Biryukov AA. Russ. Chem. Bull. Int. Ed. 2003; 52: 2328
    • 52k Pérez P, Domingo LR, Aurell MJ, Contreras R. Tetrahedron 2003; 59: 3117
    • 52l Wentrup C, Bornemann H. Eur. J. Org. Chem. 2005; 4521
    • 52m Jones GO, Houk KN. J. Org. Chem. 2008; 73: 1333
    • 53a Dowideit P, Mertens R, von Sonntag C. J. Am. Chem. Soc. 1996; 118: 11288
    • 53b Tyrrell J, Lewis-Bevan W. J. Phys. Chem. 1992; 96: 1691
    • 53c Davis RW, Gerry MC. L. J. Mol. Spectrosc. 1983; 97: 117
    • 53d Libuda HG, Zabel F, Fink EH, Becker KH. J. Phys. Chem. 1990; 94: 5860
    • 53e Takeo H, Matsumura C. J. Chem. Phys. 1976; 64: 4536
  • 54 Weinstock J. J. Org. Chem. 1961; 26: 3511
  • 55 Banert K, Berndt C, Hagedorn M, Liu H, Anacker T, Friedrich J, Rauhut G. Angew. Chem. Int. Ed. 2012; 51: 4718 ; Angew. Chem. 2012, 124, 4796
  • 56 The yields of 41a, generated via 24a or 24jj, are based on the (substoichiometric) amounts of HN3 treated with an excess of gaseous 32a or 32jj, respectively.
  • 57 Vlietstra EJ, Zwikker JW, Nolte RJ. M, Drenth W. Recl. Trav. Chim. Pays-Bas 1982; 101: 460
  • 58 Kanjia DM, Mason J, Stenhouse IA, Banks RE, Venayak ND. J. Chem. Soc., Perkin Trans. 2 1981; 975
  • 59 Zeng X, Bernhardt E, Beckers H, Banert K, Hagedorn M, Liu H. Angew. Chem. Int. Ed. 2013; 52: 3503 ; Angew. Chem. 2013, 125, 3587
  • 60 Review on aza-Wittig reactions: Palacios F, Alonso C, Aparicio D, Rubiales G, de Los Santos JM. In Organic Azides: Syntheses and Applications . Bräse S, Banert K. Wiley; Chichester: 2010: 439-467

    • For examples, see:
    • 61a Pritchina EA, Gritsan NP, Maltsev A, Bally T, Autrey T, Liu Y, Wang Y, Toscano JP. Phys. Chem. Chem. Phys. 2003; 5: 1010
    • 61b Stoffregen SA, McCulla RD, Wilson R, Cercone S, Miller J, Jenks WS. J. Org. Chem. 2007; 72: 8235
    • 61c Pantazis DA, Tsipis AC, Tsipis CA. J. Phys. Chem. A 2002; 106: 1425
    • 62a Häring AP, Kirsch SF. Molecules 2015; 20: 20042
    • 62b Banert K In Science of Synthesis . Vol. 24. de Meijere A. Thieme; Stuttgart: 2006: 747-765
    • 62c Banert K In Houben–Weyl . 4th ed., Vol. E15; Kropf H, Schaumann E. Thieme; Stuttgart: 1993: 2348-2349
  • 63 Yanai H, Taguchi T. Tetrahedron Lett. 2005; 46: 8639
  • 64 Review: Heimgartner H. Angew. Chem., Int. Ed. Engl. 1991; 30: 238 ; Angew. Chem. 1991, 103, 271
  • 65 Hagedorn, M. unpublished results, Chemnitz University of Technology, Germany.
    • 66a Hassner A, Fowler FW. J. Org. Chem. 1968; 33: 2686
    • 66b Banert K, Hagedorn M, Liedtke C, Melzer A, Schöffler C. Eur. J. Org. Chem. 2000; 257
    • 67a Plażuk D, Rychlik B, Błauż A, Domagała S. J. Organomet. Chem. 2012; 715: 102
    • 67b Shafir A, Power MP, Whitener GD, Arnold J. Organometallics 2000; 19: 3978
    • 67c Köster SD, Dittrich J, Gasser G, Hüsken N, Henao Castañeda IC, Jios JL, Della Védova CO, Metzler-Nolte N. Organometallics 2008; 27: 6326
    • 67d Siemeling U, Rother D. J. Organomet. Chem. 2009; 694: 1055
    • 67e Tennyson AG, Khramov DM, Varnado CD. Jr, Creswell PT, Kamplain JW, Lynch VM, Bielawski CW. Organometallics 2009; 28: 5142
    • 67f Nesmeyanov AN, Drozd VN, Sazonova VA. Dokl. Akad. Nauk SSSR 1963; 150: 321
  • 68 Stepp WL. US 3217017, 1965 ; Chem. Abstr. 1966, 64, 1896f.
  • 69 Banert K In Houben–Weyl . 4th ed., Vol. E15; Kropf H, Schaumann E. Thieme; Stuttgart: 1993: 1344-1347
  • 70 Müller B. Dissertation . Chemnitz University of Technology; Germany: 2002