Synthesis 2016; 48(17): 2739-2756
DOI: 10.1055/s-0035-1561456
feature
© Georg Thieme Verlag Stuttgart · New York

Pyrazole-Based Acid Ceramidase Inhibitors: Design, Synthesis, and Structure–Activity Relationships

Eleonora Diamanti
a   Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
,
Giovanni Bottegoni
a   Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
,
Luca Goldoni
a   Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
,
Natalia Realini
a   Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
,
Chiara Pagliuca
a   Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
,
Fabio Bertozzi
a   Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
,
Daniele Piomelli*
a   Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
b   Departments of Anatomy and Neurobiology, Pharmacology and Biological Chemistry, University of California, Irvine, CA 92697, USA   Email: daniele.piomelli@iit.it
,
Daniela Pizzirani
a   Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
› Author Affiliations
Further Information

Publication History

Received: 24 February 2016

Accepted after revision: 18 April 2016

Publication Date:
09 June 2016 (online)


Dedicated to Professor Stuart L. Schreiber on the occasion of his 60th birthday

Abstract

Acid ceramidase (AC) is a lysosomal cysteine amidase responsible for the cleavage of ceramide into sphingosine, which is then phosphorylated to sphingosine 1-phosphate. AC regulates the intracellular levels of ceramide and sphingosine, and AC inhibition may be useful in the treatment of disorders, such as cancer, in which ceramide-mediated­ signaling may be dysfunctional. Despite their potential experimental and therapeutic value, the number of available small-molecule inhibitors of AC activity remains limited. In the present study is described the discovery of a class of potent pyrazole carboxamide-based AC inhibitors, which were identified using the atomic property field (APF) approach and developed through systematic SAR investigations and in vitro pharmacological characterization. The best compound of this series inhibits AC with nanomolar potency and causes ceramide accumulation and sphingosine depletion in intact G361 proliferative melanoma cells. By expanding the current armamentarium of AC inhibitors, these results should facilitate future efforts to unravel the biology of AC and the therapeutic potential of its inhibition.

Supporting Information

 
  • References

    • 1a Hannun YA, Obeid LM. Nat. Rev. Mol. Cell Biol. 2008; 9: 139
    • 1b Bartke N, Hannun YA. J. Lipid Res. 2009; 50: S91
    • 2a Ogretmen B, Hannun YA. Nat. Rev. Cancer 2004; 4: 604
    • 2b Gangoiti P, Camacho L, Arana L, Ouro A, Granado MH, Brizuela L, Casas J, Fabrias G, Abad JL, Delgado A, Gomez-Munoz A. Prog. Lipid Res. 2010; 49: 316
    • 2c Ryland LK, Fox TE, Liu X, Loughran TP, Kester M. Cancer Biol. Ther. 2011; 11: 138
    • 2d Huang WC, Chen CL, Lin YS, Lin CF. J Lipids 2011; 565316
    • 2e Dimanche-Boitrel MT, Rebillard A. Handb. Exp. Pharmacol. 2013; 216: 73
  • 3 Maceyka M, Spiegel S. Nature 2014; 510 (7503) 58
    • 4a Patti GJ, Yanes O, Shriver LP, Courade JP, Tautenhahn R, Manchester M, Siuzdak G. Nat. Chem. Biol. 2012; 8: 232
    • 4b Salvemini D, Doyle T, Kress M, Nicol G. Trends Pharmacol. Sci. 2013; 34: 110
  • 5 Huang X, Withers BR, Dickson RC. Biochim. Biophys. Acta 2014; 1841: 657
    • 6a Pettus BJ, Chalfant CE, Hannun YA. Biochim. Biophys. Acta 2002; 1585: 114
    • 6b Morales A, Lee H, Goni FM, Kolesnick R, Fernandez-Checa JC. Apoptosis 2007; 12: 923
    • 7a Zhang H, Desai NN, Olivera A, Seki T, Brooker G, Spiegel S. J. Cell Biol. 1991; 114: 155
    • 7b Payne SG, Milstien S, Spiegel S. FEBS Lett. 2002; 531: 54
    • 7c Spiegel S, Milstien S. Nat. Rev. Mol. Cell Biol. 2003; 4: 397
    • 7d Takabe K, Spiegel S. J. Lipid Res. 2014; 55: 1839
  • 8 Hannun YA, Obeid LM. J. Biol. Chem. 2011; 286: 27855
    • 9a Cuvillier O, Pirianov G, Kleuser B, Vanek PG, Coso OA, Gutkind S, Spiegel S. Nature 1996; 381 (6585) : 800
    • 9b Maceyka M, Payne SG, Milstien S, Spiegel S. Biochim. Biophys. Acta 2002; 1585: 193
  • 10 Gault CR, Obeid LM, Hannun YA. Adv. Exp. Med. Biol. 2010; 688: 1
    • 11a Saied EM, Arenz C. Cell Physiol. Biochem. 2014; 34: 197
    • 11b Nussbaumer P. ChemMedChem 2008; 3: 543
    • 11c Saied EM, Arenz C. Chem. Phys. Lipids 2015;
  • 12 Bielawska A, Greenberg MS, Perry D, Jayadev S, Shayman JA, McKay C, Hannun YA. J. Biol. Chem. 1996; 271: 12646
  • 13 Raisova M, Goltz G, Bektas M, Bielawska A, Riebeling C, Hossini AM, Eberle J, Hannun YA, Orfanos CE, Geilen CC. FEBS Lett. 2002; 516: 47
  • 14 Proksch D, Klein JJ, Arenz C. J. Lipids 2011; 971618
  • 15 Camacho L, Meca-Cortes O, Abad JL, Garcia S, Rubio N, Diaz A, Celia-Terrassa T, Cingolani F, Bermudo R, Fernandez PL, Blanco J, Delgado A, Casas J, Fabrias G, Thomson TM. J. Lipid Res. 2013; 54: 1207
  • 16 Draper JM, Xia Z, Smith RA, Zhuang Y, Wang W, Smith CD. Mol. Cancer Ther. 2011; 10: 2052
  • 17 Eliyahu E, Shtraizent N, He XX, Chen DN, Shalgi R, Schuchman EH. J. Biol. Chem. 2011; 286: 35624
    • 18a Realini N, Solorzano C, Pagliuca C, Pizzirani D, Armirotti A, Luciani R, Costi MP, Bandiera T, Piomelli D. Sci. Rep. 2013; 3: 1035
    • 18b Pizzirani D, Pagliuca C, Realini N, Branduardi D, Bottegoni G, Mor M, Bertozzi F, Scarpelli R, Piomelli D, Bandiera T. J. Med. Chem. 2013; 56: 3518
  • 19 Realini N, Palese F, Pizzirani D, Pontis S, Basit A, Bach A, Ganesan A, Piomelli D. J. Biol. Chem. 2016; 291: 2422
  • 20 Pizzirani D, Bach A, Realini N, Armirotti A, Mengatto L, Bauer I, Girotto S, Pagliuca C, De Vivo M, Summa M, Ribeiro A, Piomelli D. Angew. Chem. Int. Ed. 2015; 54: 485
  • 21 Bach A, Pizzirani D, Realini N, Vozella V, Russo D, Penna I, Melzig L, Scarpelli R, Piomelli D. J. Med. Chem. 2015; 58: 9258
  • 22 Totrov M. Chem. Biol. Drug Des. 2008; 71: 15
  • 23 Ivanova AE, Burgart YaY, Saloutin VI. Chem. Heterocycl. Compd. 2013; 49: 1128
  • 24 Martin NH, Allen NW. III, Brown JD, Kmiec DM. Jr, Vo L. J. Mol. Graph. Model. 2003; 22: 127
  • 25 Marek RL. A. Curr. Org. Chem. 2002; 6: 35
  • 26 Heller ST, Natarajan SR. Org. Lett. 2006; 8: 2675
  • 27 Irwin JJ, Sterling T, Mysinger MM, Bolstad ES, Coleman RG. J. Chem. Inf. Model. 2012; 52: 1757
  • 28 Lipinski CA. J. Pharmacol. Toxicol. Meth. 2000; 44: 235
  • 29 Bedia C, Casas J, Garcia V, Levade T, Fabrias G. ChemBioChem 2007; 8: 642
  • 30 25a: h-AC IC50 = 0.270±0.185 μM; 26a: h-AC IC50 = 0.380±0.181 μM.
  • 31 Abagyan R, Raush E, Totrov M. ICM Manual 3.7 . Molsoft LCC; San Diego: 2013: 2103
  • 32 Halgren TA. J. Comput. Chem. 1996; 17: 490
    • 33a Abagyan R, Totrov M. J. Mol. Biol. 1994; 235: 983
    • 33b Totrov M. Protein-ligand docking as an energy optimization problem. In Drug-Receptor Thermodynamics: Introduction and Applications. Raffa RB. Wiley; New York: 2001: 603-624
  • 34 Bedia C, Casas J, Garcia V, Levade T, Fabrias G. ChemBioChem 2007; 8: 642
  • 35 Bligh EG, Dyer WJ. Can. J. Biochem. Physiol. 1959; 37: 911
  • 36 Basit A, Piomelli D, Armirotti A. Anal. Bioanal. Chem. 2015; 407: 5189