Synthesis 2017; 49(18): 4199-4204
DOI: 10.1055/s-0036-1588436
special topic
© Georg Thieme Verlag Stuttgart · New York

Intramolecular Hydroalkoxylation/Reduction and Hydroamination/Reduction of Unactivated Alkynes Using a Silane–Iodine Catalytic System

Shoji Fujita
Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho Chikusa, Nagoya, 464-8601, Japan   Email: m-shibu@ps.nagoya-u.ac.jp
,
Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho Chikusa, Nagoya, 464-8601, Japan   Email: m-shibu@ps.nagoya-u.ac.jp
,
Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho Chikusa, Nagoya, 464-8601, Japan   Email: m-shibu@ps.nagoya-u.ac.jp
› Author Affiliations
Japan Society for the Promotion of Science�, Grant Number: 'JP16K08162'�, Japan Agency for Medical Research and Development��.
Further Information

Publication History

Received: 31 March 2017

Accepted after revision: 02 May 2017

Publication Date:
24 May 2017 (online)


Published as part of the Special Topic Modern Cyclization Strategies in Synthesis

Abstract

A transition-metal-free silane–iodine catalytic system comprising I2 and Et3SiH promotes intramolecular hydroalkoxylation/reduction and hydroamination/reduction of unactivated alkynes. This system allows the reaction to proceed at room temperature affording 2,4- and 2,5-disubstituted pyrrolidines as well as a 2,3-disubstituted tetrahydrofuran with high diastereoselectivity.

Supporting Information

 
  • References

    • 1a Muller TE. Beller M. Chem. Rev. 1998; 98: 675
    • 1b Liu C. Bender CF. Han X. Widenhoefer RA. Chem. Commun. 2007; 3607
    • 1c Bernoud E. Lepori C. Mellah M. Schulz E. Hannedouche J. Catal. Sci. Technol. 2015; 5: 2017
    • 1d Lepori C. Hannedouche J. Synthesis 2017; 49: 1158
    • 2a Pohlki F. Doye S. Chem. Soc. Rev. 2003; 32: 104
    • 2b Huang LB. Arndt M. Goossen K. Heydt H. Goossen LJ. Chem. Rev. 2015; 115: 2596
    • 3a Muller TE. Hultzsch KC. Yus M. Foubelo F. Tada M. Chem. Rev. 2008; 108: 3795
    • 3b Weiss CJ. Marks TJ. Dalton Trans. 2010; 39: 6576
    • 3c Hong S. Marks TJ. Acc. Chem. Res. 2004; 37: 673
    • 4a Qian H. Han XQ. Widenhoefer RA. J. Am. Chem. Soc. 2004; 126: 9536
    • 4b Yang CG. Reich NW. Shi ZJ. He C. Org. Lett. 2005; 7: 4553
    • 4c Komeyama K. Morimoto T. Nakayama Y. Takaki K. Tetrahedron Lett. 2007; 48: 3259
    • 4d Adrio LA. Quek LS. Taylor JG. Hii KK. Tetrahedron 2009; 65: 10334
    • 4e Atesin AC. Ray NA. Stair PC. Marks TJ. J. Am. Chem. Soc. 2012; 134: 14682
    • 4f Shigehisa H. Hayashi M. Ohkawa H. Suzuki T. Okayasu H. Mukai M. Yamazaki A. Kawai R. Kikuchi H. Satoh Y. Fukuyama A. Hiroya K. J. Am. Chem. Soc. 2016; 138: 10597
    • 5a Harding KE. Burks SR. J. Org. Chem. 1981; 46: 3920
    • 5b Bender CF. Widenhoefer RA. J. Am. Chem. Soc. 2005; 127: 1070
    • 5c Kim JY. Livinghouse T. Org. Lett. 2005; 7: 4391
    • 5d Bender CF. Widenhoefer RA. Chem. Commun. 2006; 4143
    • 5e Dochnahl M. Pissarek JW. Blechert S. Lohnwitz K. Roesky PW. Chem. Commun. 2006; 3405
    • 5f Bauer EB. Andavan GT. S. Hollis TK. Rubio RJ. Cho J. Kuchenbeiser GR. Helgert TR. Letko CS. Tham FS. Org. Lett. 2008; 10: 1175
    • 5g Hesp KD. Tobisch S. Stradiotto M. J. Am. Chem. Soc. 2010; 132: 413
    • 5h Perez SJ. Purino MA. Cruz DA. Lopez-Soria JM. Carballo RM. Ramirez MA. Fernandez I. Martin VS. Padron JI. Chem. Eur. J. 2016; 22: 15529
    • 5i Sipos G. Ou A. Skelton BW. Falivene L. Cavallo L. Dorta R. Chem. Eur. J. 2016; 22: 6939
    • 6a Riediker M. Schwartz J. J. Am. Chem. Soc. 1982; 104: 5842
    • 6b Utimoto K. Pure Appl. Chem. 1983; 55: 1845
    • 6c Elgafi S. Field LD. Messerle BA. J. Organomet. Chem. 2000; 607: 97
    • 6d Genin E. Antoniotti S. Michelet V. Genêt JP. Angew. Chem. Int. Ed. 2005; 44: 4949
    • 6e Liu B. De Brabander JK. Org. Lett. 2006; 8: 4907
    • 6f Bhuvaneswari S. Jeganmohan M. Cheng CH. Chem. Eur. J. 2007; 13: 8285
    • 6g Seo SY. Yu XH. Marks TJ. J. Am. Chem. Soc. 2009; 131: 263
    • 6h Patil NT. Singh V. Konala A. Mutyala AK. Tetrahedron Lett. 2010; 51: 1493
    • 6i Pouy MJ. Delp SA. Uddin J. Ramdeen VM. Cochrane NA. Fortman GC. Gunnoe TB. Cundari TR. Sabat M. Myers WH. ACS Catal. 2012; 2: 2182
    • 7a Fukuda Y. Utimoto K. Synthesis 1991; 975
    • 7b Li YW. Marks TJ. J. Am. Chem. Soc. 1996; 118: 9295
    • 7c Burling S. Field LD. Messerle BA. Organometallics 2000; 19: 87
    • 7d Kim H. Livinghouse T. Shim JH. Lee SG. Lee PH. Adv. Synth. Catal. 2006; 348: 701
    • 7e Wilckens K. Uhlemann M. Czekelius C. Chem. Eur. J. 2009; 15: 13323
    • 7f Han JB. Xu B. Hammond GB. J. Am. Chem. Soc. 2010; 132: 916
    • 8a Schlummer B. Hartwig JF. Org. Lett. 2002; 4: 1471
    • 8b Haskins CM. Knight DW. Chem. Commun. 2002; 2724
    • 8c Coulombel L. Duñach E. Green Chem. 2004; 6: 499
    • 9a Fujita S. Abe M. Shibuya M. Yamamoto Y. Org. Lett. 2015; 17: 3822
    • 9b Shibuya M. Abe M. Fujita S. Yamamoto Y. Org. Biomol. Chem. 2016; 14: 5322
  • 10 Leger PR. Murphy RA. Pushkarskaya E. Sarpong R. Chem. Eur. J. 2015; 21: 4377
  • 11 Mahdi T. Stephan DW. Chem. Eur. J. 2015; 21: 11134
  • 12 Vasilyev AV. Russ. Chem. Rev. 2013; 82: 187
  • 13 Shibuya M. Fujita S. Abe M. Yamamoto Y. ACS Catal. 2017; 7: 2848
  • 14 Larson GL. Fry JL. Org. React. 2008; 71: 1
  • 15 Miura K. Okajima S. Hondo T. Nakagawa T. Takahashi T. Hosomi A. J. Am. Chem. Soc. 2000; 122: 11348
  • 16 Sherman ES. Fuller PH. Kasi D. Chemler SR. J. Org. Chem. 2007; 72: 3896
  • 17 Shigehisa H. Koseki N. Shimizu N. Fujisawa M. Niitsu M. Hiroya K. J. Am. Chem. Soc. 2014; 136: 13534
  • 18 Kato Y. Yen DH. Fukudome Y. Hara T. Urabe H. Org. Lett. 2010; 12: 4137
  • 19 Zhang J. Yang CG. He C. J. Am. Chem. Soc. 2006; 128: 1798