Synthesis 2017; 49(15): 3347-3356
DOI: 10.1055/s-0036-1588490
short review
© Georg Thieme Verlag Stuttgart · New York

Nucleophile/Electrophile Combinations in Aromatic Substitution: From Wheland to Wheland–Meisenheimer Intermediates Using Strongly Activated Arenes

Gabriele Micheletti
Department of Industrial Chemistry ‘Toso Montanari’ University of Bologna, Viale del Risorginento 4 40136 Bologna, Italy   Email: carla.boga@unibo.it
,
Department of Industrial Chemistry ‘Toso Montanari’ University of Bologna, Viale del Risorginento 4 40136 Bologna, Italy   Email: carla.boga@unibo.it
› Author Affiliations
Further Information

Publication History

Received: 16 May 2017

Accepted after revision: 16 June 2017

Publication Date:
13 July 2017 (online)


Dedicated to Prof. H. Mayr on the occasion of his 70th birthday

Abstract

This short review provides an overview on the interaction between 1,3,5-triaminobenzene derivatives and different kinds of electrophiles. Due to the ambident reactivity of these nucleophiles (i.e., at the nitrogen atom of the substituents and at the aromatic carbon atom) different compounds can be obtained. Particular attention is devoted to the detection, isolation, and characterization of covalent intermediates of aromatic substitution, starting from Wheland intermediates until the first detection and characterization of Wheland–Meisenheimer intermediates.

1 Introduction

2 Reactions between 1,3,5-Triaminobenzene Derivatives and Charged Electrophiles

2.1 The Proton as an Electrophile

2.2 Arenediazonium Salts as Electrophiles

3 Reactions between 1,3,5-Triaminobenzene Derivatives and Neutral­ Electrophiles

3.1 Alkyl Halides as Electrophiles

3.2 Acyl Halides and Sulfonyl Chlorides as Electrophiles

3.3 Aryl Halides and Heteroaryl Halides as Electrophiles

3.4 Polynitroheteroaromatics as Electrophiles

4 Conclusion

 
  • References

    • 1a Taylor R. Electrophilic Aromatic Substitution. Wiley; New York: 1990
    • 1b Katritzky AR. Taylor R. Electrophilic Substitution of Heterocycles: Quantitative Aspects. In Advances in Heterocyclic Chemistry. Vol. 47. Academic Press; New York: 1990
    • 2a Melander LC. S. The Use of Nuclides in the Determination of Organic Reaction Mechanisms. University of Notre Dame Press; Notre Dame: 1955
    • 2b Lau W. Kochi JK. J. Am. Chem. Soc. 1986; 108: 6720
    • 2c Lau W. Kochi JK. J. Am. Chem. Soc. 1984; 106: 7100
    • 2d Hubig SM. Kochi JK. J. Am. Chem. Soc. 2000; 122: 8279
    • 2e Fukuzumi S. Kochi JK. J. Am. Chem. Soc. 1981; 103: 7240
    • 2f Rosokha SV. Kochi JK. J. Org. Chem. 2002; 67: 1727
    • 3a Hubig SM. Kochi JK. J. Org. Chem. 2000; 65: 6807
    • 3b Forlani L. J. Phys. Org. Chem. 1999; 12: 417
  • 4 Wheland GW. J. Am. Chem. Soc. 1942; 64: 900
  • 5 Pfeiffer P. Wizinger R. Justus Liebigs Ann. Chem. 1928; 461: 132
  • 6 Brown HC. Pearsall HW. J. Am. Chem. Soc. 1952; 74: 191
    • 7a Norris JF. Ingraham JN. J. Am. Chem. Soc. 1940; 62: 1298
    • 7b Olah GA. Kuhn S. Pavlath A. Nature (London) 1956; 693
    • 7c MacLean C. Van der Waals JH. Mackor EL. Mol. Phys. 1958; 1: 247
    • 7d Doering W. vE. Saunders M. Boyton HG. Earhart HW. Wadley EF. Edwards WR. Laber G. Tetrahedron 1958; 4: 178
    • 7e Birchall T. Gillespie RJ. Can. J. Chem. 1964; 42: 502
  • 8 Olah GA. Scholosberg RH. Porter RD. Mo YK. Kelly DP. Mateescu GD. J. Am. Chem. Soc. 1972; 94: 2034
    • 9a Reed CA. Acc. Chem. Res. 1998; 31: 133
    • 9b Reed CA. Kim K.-C. Stoyanov ES. Stasko D. Tham FS. Mueller LJ. Boyd PD. W. J. Am. Chem. Soc. 2003; 125: 1796
  • 10 Effenberger F. Niess R. Angew. Chem., Int. Ed. Engl. 1967; 6: 1067
  • 11 Effenberger F. Acc. Chem. Res. 1989; 22: 27
    • 12a Bunnet JF. Zahler RE. Chem. Rev. 1951; 49: 273
    • 12b Bunnet JF. Q. Rev. Chem. Soc. 1958; 12: 1
    • 12c Meisenheimer J. Justus Liebigs Ann. Chem. 1902; 323: 205
    • 12d Jackson CL. Gazzolo FH. Am. Chem. J. 1900; 23: 376
    • 12e Jackson CL. Earle RB. Am. Chem. J. 1903; 29: 89
    • 13a Terrier F. Modern Nucleophilic Aromatic Substitution. Wiley-VCH; Weinheim: 2013
    • 13b Terrier F. Nucleophilic Aromatic Displacement. VCH; New York: 1991
    • 14a Brouwer DM. Mackor EL. MacLean C. In Carbonium Ions. Vol. 2. Olah GA. Schleyer P. vR. Wiley-Interscience; New York: 1970: 837
    • 14b Fӑrcașiu D. Acc. Chem. Res. 1982; 15: 6
    • 15a Yamaoka T. Hosoya H. Nagakura S. Tetrahedron 1968; 24: 6203
    • 15b Yamaoka T. Hosoya H. Nagakura S. Tetrahedron 1970; 26: 4125
  • 16 Knoche W. Sachs W. Vogel S. Bull. Soc. Chim. Fr. 1988; 377
  • 17 Knoche W. Schoeller W. Schomaecker R. Vogel S. J. Am. Chem. Soc. 1988; 110: 7484
  • 18 Sachs W. Knoche W. Herrmann S. J. Chem. Soc., Perkin Trans. 2 1991; 701
  • 19 Boga C. Forlani L. Tozzi S. Del Vecchio E. Mazzanti A. Monari M. Zanna N. Curr. Org. Chem. 2014; 18: 512
  • 20 Effenberger F. Reisinger F. Schoenwaelder KH. Baeuerle P. Stezowski JJ. Jogun KH. Schoellkopf K. Stohrer WD. J. Am. Chem. Soc. 1987; 109: 882
    • 21a Glatzhofer DT. Allen D. Taylor RW. J. Org. Chem. 1990; 55: 6229
    • 21b Glatzhofer DT. Khan MA. Acta Crystallogr., Sect. C 1993; 49: 2128
    • 22a Mayr H. Patz M. Angew. Chem., Int. Ed. Engl. 1994; 33: 938
    • 22b Mayr H. Kempf B. Ofial AR. Acc. Chem. Res. 2003; 36: 66
    • 22c Mayr H. Patz M. Gotta MF. Ofial AR. Pure Appl. Chem. 1998; 70: 1993
    • 22d Mayr H. Bug T. Gotta MF. Hering N. Irrgang B. Janker B. Kempf B. Loos R. Ofial AR. Remmenikov G. Schimmel N. J. Am. Chem. Soc. 2001; 123: 9500
  • 23 Mayr H. Hartnagel M. Grimm K. Liebigs Ann. 1997; 55
  • 24 Lakhdar S. Westermaier M. Terrier F. Goumont R. Boubaker T. Ofial AR. Mayr H. J. Org. Chem. 2006; 71: 9088
  • 25 Boga C. Del Vecchio E. Forlani L. Eur. J. Org. Chem. 2004; 1567
  • 26 Boga C. Del Vecchio E. Forlani L. Tocke Dite Ngobo A.-L. Tozzi S. J. Phys. Org. Chem. 2007; 20: 201
  • 27 Boga C. Del Vecchio E. Forlani L. Tozzi S. J. Org. Chem. 2007; 72: 8741
  • 28 Del Vecchio E. Boga C. Forlani L. Tozzi S. Micheletti G. Cino S. J. Org. Chem. 2015; 80: 2216
  • 29 Boga C. Del Vecchio E. Tozzi S. Forlani L. Monari M. Micheletti G. Zanna N. ARKIVOC 2014; (iv): 51
    • 30a Niess R. Nagel K. Effenberger F. Tetrahedron Lett. 1968; 9: 4265
    • 30b Fischer P. Mack KE. Mossner E. Effenberger F. Chem. Ber. 1977; 110: 181
  • 31 Effenberger F. Mack KE. Nagel K. Niess R. Chem. Ber. 1977; 110: 165
  • 32 Menzel P. Effenberger F. Angew. Chem., Int. Ed. Engl. 1975; 14: 62
  • 33 Effenberger F. Agster W. Fischer P. Jogun KH. Stezowski JJ. Daltrozzo E. Kollmannsberger-von Nell G. J. Org. Chem. 1983; 48: 4649
  • 34 Micheletti G. Boga C. Pafundi M. Pollicino S. Zanna N. Org. Biomol. Chem. 2016; 14: 768
  • 35 Boga C. Del Vecchio E. Forlani L. Mazzanti A. Todesco PE. Angew. Chem. Int. Ed. 2005; 44: 3285
    • 36a Mayr H. Ofial AR. Acc. Chem. Res. 2016; 49: 952 ; and references therein
    • 36b Mayr H. Tetrahedron 2015; 71: 5095
  • 37 Terrier F. Lakhdar S. Boubaker T. Goumont R. J. Org. Chem. 2005; 70: 6242
    • 38a Terrier F. Lakhdar S. Goumont R. Boubaker T. Buncel E. Chem. Commun. 2004; 2586
    • 38b Lakhdar S. Goumont R. Terrier F. Boubaker T. Dust JM. Buncel E. Org. Biomol. Chem. 2007; 5: 1744
  • 39 Coetzee JF. Padmanabhan GR. J. Am. Chem. Soc. 1965; 87: 5005
  • 40 Jin P. Li F. Riley K. Lenoir D. Schleyer P. vR. Chen Z. J. Org. Chem. 2010; 75: 3761
  • 41 Boga C. Micheletti G. Cino S. Fazzini S. Forlani L. Zanna N. Spinelli D. Org. Biomol. Chem. 2016; 14: 4267