Synthesis 2017; 49(18): 4221-4228
DOI: 10.1055/s-0036-1588543
special topic
© Georg Thieme Verlag Stuttgart · New York

Phenol Oxidative Dearomatization of Modified Nucleoside Templates: A Simple Access to the C7-Spiroannulated Octosyl Acid Framework

Venkannababu Mullapudi
a   Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India   Email: vr.chepuri@ncl.res.in
,
Ravindra B. Bhogade
a   Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India   Email: vr.chepuri@ncl.res.in
,
Mukund V. Deshpande
b   Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
,
a   Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India   Email: vr.chepuri@ncl.res.in
› Author Affiliations
The antifungal program at CSIR-NCL, Pune, is funded by the Department of Biotechnology, India (grant BT/PR7442/MED/29/680/2012). V.M. thanks UGC for a research fellowship.
Further Information

Publication History

Received: 15 April 2017

Accepted after revision: 26 July 2017

Publication Date:
28 August 2017 (online)


Published as part of the Special Topic Modern Cyclization Strategies in Synthesis

Abstract

Phenol oxidative dearomatization and cyclization has been executed successfully on nucleoside templates to synthesize C7-spiroannulated perhydrofuropyran nucleosides and C6-spiroannulated perhydrofurofuran nucleosides as novel analogues of octosyl acid and related peptidyl nucleosides.

Supporting Information

 
  • References

    • 1a Hýrošová E. Fišera L. Medvecký M. Reissig H.-U. Al-Harrasi A. Koóš M. ARKIVOC 2009; (ix): 122
    • 1b Winn M. Goss RJ. M. Kimura K. Bugg TD. H. Nat. Prod. Rep. 2010; 27: 279
    • 1c Nguyen HV. Sallustrau A. Balzarini J. Bedford MR. Eden JC. Georgousi N. Hodges NJ. Kedge J. Mehellou Y. Tselepis C. Tucker JH. R. J. Med. Chem. 2014; 57: 5817
    • 1d Miranda LS. M. de Souza R. Lopes AB. Finelli FG. Curr. Org. Synth. 2015; 12: 639
    • 2a Knapp S. Chem. Rev. 1995; 95: 1859
    • 2b Romeo G. Chiacchio U. Corsaro A. Merino P. Chem. Rev. 2010; 110: 3337
    • 2c Singh S. Bhattarai D. Veeraswamy G. Choi Y. Lee K. Curr. Org. Chem. 2016; 20: 856
    • 3a Furter R. Rast DM. FEMS Microbiol. Lett. 1985; 28: 205
    • 3b Wu J. Yu WQ. Fu LX. He W. Wang Y. Chai BS. Song CJ. Chang JB. Eur. J. Med. Chem. 2013; 63: 739
    • 3c Kral K. Bieg T. Nawrot U. Wlodarczyk K. Lalik A. Hahn P. Wandzik I. Bioorg. Chem. 2015; 61: 13
    • 3d Goughenour KD. Rappleye CA. Virulence 2017; 8: 211
    • 4a Sakata K. Sakurai A. Tamura S. Agric. Biol. Chem. 1974; 38: 1883
    • 4b Sakata K. Sakurai A. Tamura S. Tetrahedron Lett. 1975; 3191
    • 4c Hanessian S. Dixit DM. Liak TJ. Pure Appl. Chem. 1981; 53: 129
    • 4d Sakanaka O. Ohmori T. Kozaki S. Suami T. Bull. Chem. Soc. Jpn. 1987; 60: 1057
    • 4e More JD. Org. Prep. Proced. Int. 2007; 39: 107
    • 5a Hanessian S. Marcotte S. Machaalani R. Huang GB. Org. Lett. 2003; 5: 4277
    • 5b Loiseleur O. Schneider H. Huang GB. Machaalani R. Selles P. Crowley P. Hanessian S. Org. Process Res. Dev. 2006; 10: 518
    • 5c Loiseleur O. Ritson D. Nina M. Crowley P. Wagner T. Hanessian S. J. Org. Chem. 2007; 72: 6353
    • 5d Khalaf JK. VanderVelde DG. Datta A. J. Org. Chem. 2008; 73: 5977
    • 6a Isono K. Crain PF. McCloskey JA. J. Am. Chem. Soc. 1975; 97: 943
    • 6b Bhaket P. Stauffer CS. Datta A. J. Org. Chem. 2004; 69: 8594
    • 6c Moukha-Chafiq O. Reynolds RC. Nucleosides, Nucleotides Nucleic Acids 2014; 33: 53
    • 7a Hanessian S. Ritson DJ. J. Org. Chem. 2006; 71: 9807
    • 7b Soengas RG. Silva S. Mini-Rev. Med. Chem. 2012; 12: 1485
    • 7c He NS. Wu P. Lei YX. Xu BF. Zhu XC. Xu GD. Gao YJ. Qi JZ. Deng ZX. Tang GL. Chen WQ. Xiao YL. Chem. Sci. 2017; 8: 444
    • 8a Azuma T. Isono K. Tetrahedron Lett. 1976; 1687
    • 8b Camarasa M.-J. San-Félix A. Velázquez S. Pérez-Pérez M.-J. Gago F. Balzarini J. Curr. Top. Med. Chem. 2004; 4
    • 8c Elshahawi SI. Shaaban KA. Kharel MK. Thorson JS. Chem. Soc. Rev. 2015; 44: 7591
    • 9a Kommagalla Y. Cornea S. Riehle R. Torchilin V. Degterev A. Ramana CV. MedChemComm 2014; 5: 1359
    • 9b Pulya S. Kommagalla Y. Sant DG. Jorwekar SU. Tupe SG. Deshpande MV. Ramana CV. RSC Adv. 2016; 6: 11691
    • 10a Grove JF. MacMillan J. Mulholland TP. C. Rogers MA. T. J. Chem. Soc. 1952; 3977
    • 10b Harris CM. Roberson JS. Harris TM. J. Am. Chem. Soc. 1976; 98: 5380
    • 11a Heilmann J. Mayr S. Brun R. Rali T. Sticher O. Helv. Chim. Acta 2000; 83: 2939
    • 11b Chin Y.-W. Salim AA. Su B.-N. Mi Q. Chai H.-B. Riswan S. Kardono LB. S. Ruskandi A. Farnsworth NR. Swanson SM. Kinghorn AD. J. Nat. Prod. 2008; 71: 390
    • 11c Song LY. Yao HL. Dai YJ. Wu MW. Tong RB. Tetrahedron Lett. 2016; 57: 4257
    • 13a Grzybowski M. Skonieczny K. Butenschon H. Gryko DT. Angew. Chem. Int. Ed. 2013; 52: 9900
    • 13b Reddy RR. Gudup SS. Ghorai P. Angew. Chem. Int. Ed. 2016; 55: 15115
  • 15 Kadam P. Karpoormath R. Omondi B. Chenia H. Ramjugernath D. Koorbanally NA. Med. Chem. Res. 2015; 24: 3174
    • 16a Yamato M. Sato K. Hashigaki K. Koyama T. Chem. Pharm. Bull. 1977; 25: 706
    • 16b Singh RP. Singh VK. J. Org. Chem. 2004; 69: 3425
    • 17a Ravn J. Freitag M. Nielsen P. Org. Biomol. Chem. 2003; 1: 811
    • 17b Stauffiger A. Leumann CJ. Eur. J. Org. Chem. 2009; 1153
    • 19a Tellitu I. Urrejola A. Serna S. Moreno I. Herrero MT. Domínguez E. SanMartin R. Correa A. Eur. J. Org. Chem. 2007; 437
    • 19b Choi KW. Brimble MA. Org. Biomol. Chem. 2009; 7: 1424
    • 19c Harned AM. Tetrahedron Lett. 2014; 55: 4681
    • 20a Barton DH. R. McCombie SW. J. Chem. Soc., Perkin Trans. 1 1975; 1574
    • 20b Adiyaman M. Lawson JA. Hwang S.-W. Khanapure SP. FitzGerald GA. Rokach J. Tetrahedron Lett. 1996; 37: 4849