Synthesis 2017; 49(03): 539-553
DOI: 10.1055/s-0036-1588645
feature
© Georg Thieme Verlag Stuttgart · New York

Photocaged Hydrocarbons, Aldehydes, Ketones, Enones, and Carboxylic Acids and Esters that Release by the Norrish II Cleavage Protocol and Beyond: Controlled Photoinduced Fragrance Release

Axel G. Griesbeck*
a   Department of Chemistry, University of Cologne, Greinstr. 4, 50939 Köln, Germany   Email: griesbeck@uni-koeln.de
,
Björn Porschen
a   Department of Chemistry, University of Cologne, Greinstr. 4, 50939 Köln, Germany   Email: griesbeck@uni-koeln.de
,
Christian Kropf*
b   Henkel AG & Co. KgaA, Henkelstr. 67, 40589 Düsseldorf, Germany
,
Agnieszka Landes
a   Department of Chemistry, University of Cologne, Greinstr. 4, 50939 Köln, Germany   Email: griesbeck@uni-koeln.de
,
Olga Hinze
a   Department of Chemistry, University of Cologne, Greinstr. 4, 50939 Köln, Germany   Email: griesbeck@uni-koeln.de
,
Ursula Huchel
b   Henkel AG & Co. KgaA, Henkelstr. 67, 40589 Düsseldorf, Germany
,
Thomas Gerke
b   Henkel AG & Co. KgaA, Henkelstr. 67, 40589 Düsseldorf, Germany
› Author Affiliations
Further Information

Publication History

Received: 13 October 2016

Accepted after revision: 13 October 2016

Publication Date:
01 December 2016 (online)


Abstract

Five families of caged fragrance compounds that allow the storage and release of the following small volatile organic molecules are described: terpene hydrocarbons, aldehydes, ketones, Michael-type α,β-unsaturated enones, and carboxylic acids and esters. These caged molecules are released by photoexcitation via carbonyl-directed hydrogen-transfer processes and subsequent C–C bond cleavage (Norrish Type II) or by didenitrogenation of diazirines.

Supporting Information

 
  • References

  • 1 Goeldner M, Givens R. Dynamic Studies in Biology: Phototriggers, Photoswitches and Caged Biomolecules. Wiley-VCH; Weinheim: 2005
  • 2 Lemke EA, Summerer D, Geierstanger BH, Brittain SM, Schultz PG. Nat. Chem. Biol. 2007; 3: 769
  • 3 Gonzales MA, Mascharak PK. J. Inorg. Biochem. 2014; 133: 127
  • 4 Cram DJ, Tanner ME, Thomas R. Angew. Chem., Int. Ed. Engl. 1991; 30: 1024
  • 5 Smith E, Collins I. Future Med. Chem. 2015; 7: 159
  • 6 Xia Y, Peng L. Chem. Rev. 2013; 113: 7880
  • 7 Chaulk SG, MacMillan AM. Nat. Protoc. 2007; 2: 1052
  • 8 Pelliccioli A, Wirz J. Photochem. Photobiol. Sci. 2002; 1: 441
  • 9 Falvey DE, Sundararajan C. Photochem. Photobiol. Sci. 2004; 3: 831
    • 10a Idris NM, Gnanasammandhan I, Bansal A, Zhang Y. Chem. Soc. Rev. 2015; 44: 1449
    • 10b Sortino S. J. Mater. Chem. 2012; 22: 301
    • 10c Shao Q, Xing B. Chem. Soc. Rev. 2010; 39: 2835
    • 10d Blake JA, Bareiss B, Jimenez L, Griffith M, Scaiano JC. Photochem. Photobiol. Sci. 2012; 11: 539
  • 11 Alvarez-Lorenzo C, Bromberg L, Concheiro A. Photochem. Photobiol. 2009; 85: 848
    • 12a Sanghamitra A, Ikbal M, Kumar A, Singh ND. P. J. Photochem. Photobiol., B 2012; 111: 39
    • 12b Liu X, Macaulay ED. M, Pickett JA. J. Chem. Ecol. 1984; 10: 809
  • 13 Bochet CG, Blanc A In Handbook of Photochemistry. Vol. 1. Griesbeck A, Oelgemöller M, Ghetti F. CRC Press; Boca Raton: 2012: 73
  • 14 Klan P, Solomek T, Bochet C, Blanc A, Givens R, Rubina M, Popik V, Kostikov A, Wirz J. Chem. Rev. 2013; 113: 119
  • 15 Solomek T, Wirz J, Klan P. Acc. Chem. Res. 2015; 48: 3064
  • 16 Luchowski R, Matveeva EG, Shtoyko T, Sarkar P, Patsenker LD, Klochko OP, Terpetschnig EA, Borejdo J, Akopova I, Gryczynski Z, Gryczynski I. Curr. Pharm. Biotechnol. 2010; 11: 96
  • 17 Pandurangi RS, Karra SR, Kuntz RR, Volkert WA. Photochem. Photobiol. 1996; 64: 100
  • 18 Ford PC, Wecksler S. Coord. Chem. Rev. 2005; 249: 1382
  • 19 Vittorino E, Cicciarella E, Sortino S. Chem. Eur. J. 2009; 15: 6802
  • 20 Givens RS, Rubina M, Wirz J. Photochem. Photobiol. Sci. 2012; 11: 472
  • 21 Ohtsuki T, Miki S, Kobayashi S, Haraguchi T, Nakata E, Hirakawa K, Sumita K, Watanabe K, Okazaki S. Sci. Rep. 2015; 5: No. 18577
  • 22 Levrand B, Herrmann A. Chimia 2007; 61: 661
    • 23a Herrmann A. Photochem. Photobiol. Sci. 2012; 11: 446
    • 23b Herrmann A. Angew. Chem. Int. Ed. 2007; 46: 5836
    • 23c Levrand B, Fieber W, Lehn JM, Herrmann A. Helv. Chim. Acta 2007; 90: 2281
    • 23d Gautschi M, Bajgrowicz JA, Kraft P. Chimia 2001; 55: 379
    • 23e Derrer S, Flachsmann F, Plessis C, Stang M. Chimia 2007; 61: 665
    • 24a Roth HD. Pure Appl. Chem. 2001; 73: 395
    • 24b Wagner PJ. Top. Curr. Chem. 1976; 66: 1
  • 25 Wagner PJ In Handbook of Photochemistry. Horspool WH, Song P.-S. CRC Press; Boca Raton: 1994: 449
  • 26 Norrish RG. W, Appleyard ME. S. J. Chem. Soc. 1934; 874
  • 27 McMillan GR, Calvert JG, Pitts JN. Jr. J. Am. Chem. Soc. 1964; 86: 3602
  • 28 Yang NC, Yang D.-H. J. Am. Chem. Soc. 1958; 80: 2913
  • 29 Small RD. Jr, Scaiano JC. Chem. Phys. Lett. 1977; 50: 431
  • 30 Johnston LJ, Scaiano JC. Chem. Rev. 1989; 89: 521
  • 31 Cai X, Cygon P, Goldfuss B, Griesbeck AG, Heckroth H, Fujitsuka M, Majima T. Chem. Eur. J. 2006; 12: 4662
  • 32 Srikrishna A, Vijaykumar D, Reddy TJ. Tetrahedron 1997; 53: 1439
  • 33 Ouellet SG, Tuttle JB, MacMillan DW. C. J. Am. Chem. Soc. 2005; 127: 32
  • 34 Pietrzak M, Jedrzejewska B. J. Organomet. Chem. 2011; 696: 2135
  • 35 Muzart J, Ajjou AN. Synthesis 1993; 785
  • 36 Brown HC, Zweifel G. J. Am. Chem. Soc. 1961; 83: 1241
  • 37 Carman RM, Garner AC. Aust. J. Chem. 1995; 48: 1301
  • 38 Williams DR, Phillips JG. J. Org. Chem. 1981; 46: 5452
  • 39 Yamashita M, Matsumiya K, Morimoto H, Suemitsu R. Bull. Chem. Soc. Jpn. 1989; 62: 1668
  • 40 Griesbeck AG, Hinze O, Görner H, Huchel U, Kropf C, Sundermeier U, Gerke T. Photochem. Photobiol. Sci. 2012; 11: 587
  • 41 Xu M, Lukeman M, Wan P. J. Photochem. Photobiol., A 2009; 204: 52
  • 42 Kuhn HJ, Braslavsky SE, Schmidt R. Pure Appl. Chem. 2004; 76: 2105
  • 43 Zepp RG, Gumz MM, Miller WL, Gao H. J. Phys. Chem. A 1998; 102: 5716
  • 44 Mukaiyama T, Stevens RW, Iwasawa N. Chem. Lett. 1982; 353
  • 45 Mukaiyama T, Iwasaw N, Stevens RW, Haga T. Tetrahedron 1984; 40: 1381
  • 46 Serra S. Molecules 2015; 20: 12817
  • 47 Imamoto T, Kusumoto T, Yokoyama M. Tetrahedron Lett. 1983; 24: 5233
  • 48 Christoffers J. J. Chem. Soc., Perkin Trans. 1 1997; 3141
  • 49 Alonso-Gomez JL, Pazos Y, Navarro-Vazquez A, Lugtenburg J, Cid MM. Org. Lett. 2005; 7: 3773
  • 50 Wahl B, Philipson Y, Bonin H, Mortreux A, Sauthier M. J. Org. Chem. 2013; 78: 1547
  • 51 Iglesias E. J. Chem. Soc., Perkin Trans. 2 1997; 431
  • 52 Hu X, Zhang Q, Yu H, Zhao D, Dong S, Zhou W, Tang Z. J. Appl. Spectrosc. 2015; 81: 949
  • 53 Murphy SW. S. J. Chem. Soc., Perkin Trans. 1 1986; 1445
  • 54 Wessig P, Mühling O In Molecular and Supramolecular Photochemistry. Vol. 12. Griesbeck AG, Mattay J. Dekker; New York: 2005: 41
  • 55 Wagner G, Knoll W, Bobek MM, Brecker L, Van Herwijnen HW. G, Brinker UH. Org. Lett. 2010; 12: 332
  • 56 Knoll W, Kaneno D, Bobek MM, Brecker L, Rosenberg MG, Tomoda S, Brinker UH. J. Org. Chem. 2012; 77: 1340
  • 57 Shustov GV, Varlamov SV, Rauk A, Kostyanovskii RG. J. Am. Chem. Soc. 1990; 112: 3403
  • 58 Modarelli DA, Morgan S, Platz MS. J. Am. Chem. Soc. 1992; 114: 7034
  • 59 Rosenberg MG, Kam SM, Brinker UH. Tetrahedron Lett. 1996; 37: 3235
  • 60 Griesbeck, A. G.; Landes, A.; Huchel, U.; Kropf, C.; Gerke, T. unpublished results.
  • 61 Matsumoto S, Koitabashi S, Otani Y, Akazome M. Tetrahedron Lett. 2015; 56: 4320
  • 62 Villa G, Povie G, Renaud P. J. Am. Chem. Soc. 2011; 133: 5913