Synthesis 2017; 49(06): 1182-1189
DOI: 10.1055/s-0036-1588648
short review
© Georg Thieme Verlag Stuttgart · New York

Role of Fluoride Ions in Palladium-Catalyzed Cross-Coupling Reactions­

Laurence Grimaud
Ecole Normale Supérieure-PSL Research University, Département de Chimie, Sorbonne Universités - UPMC Univ Paris 06, CNRS UMR 8640 PASTEUR, 24 Rue Lhomond, 75231 Paris Cedex 5, France   Email: Anny.Jutand@ens.fr
,
Anny Jutand*
Ecole Normale Supérieure-PSL Research University, Département de Chimie, Sorbonne Universités - UPMC Univ Paris 06, CNRS UMR 8640 PASTEUR, 24 Rue Lhomond, 75231 Paris Cedex 5, France   Email: Anny.Jutand@ens.fr
› Author Affiliations
Further Information

Publication History

Received: 08 October 2016

Accepted: 13 October 2016

Publication Date:
15 November 2016 (online)


Abstract

Fluoride ions are known to promote Suzuki–Miyaura, Hiyama, and Stille reactions [cross-coupling between aryl halides ArX and nucleo­philes Ar′B(OH)2, Ar′Si(OMe)3, and Ar′SnBu3, respectively], where they exert a similar triple role: (1) They favor transmetalation by formation of trans-ArPdFL2 (L = PPh3) complexes that react with the nucleophiles in contrast to trans-ArPdXL2. (2) They catalyze the reductive elimination from trans-ArPdAr′L2 generated in the transmetalation. (3) The final role is negative, by formation of unreactive anionic species [Ar′BF(OH)2], [Ar′SiF(OMe)3], or [Ar′SnFBu3], respectively. Consequently the rate of the rate-determining transmetalation is controlled by the concentration ratio [F]/[nucleophile] which must be less or close to one to ensure fast transmetalation.

1 Introduction

2 Reaction of Fluoride Ions with ArPdXL2 Complexes

3 The Triple Role of Fluoride Ions in Suzuki–Miyaura Reactions

4 The Triple Role of Fluoride Ions in Hiyama Reactions

5 The Triple Role of Fluoride Ions in Stille Reactions

6 Conclusion

 
  • References

    • 1a Miyaura N. Synthesis of Biaryls via the Cross-Coupling Reaction of Arylboronic Acids. In Advances in Metal-Organic Synthesis. Vol. 6. JAI Press; London: 1998: 187
    • 1b Suzuki A. J. Organomet. Chem. 1999; 576: 147
    • 1c Alonso F, Beletskaya IP, Yus M. Tetrahedron 2008; 64: 3047
    • 1d Molander GA. Angew. Chem. Int. Ed. 2009; 48: 9240
    • 1e Lennox AJ. J, Lloyd-Jones GC. Isr. J. Chem. 2010; 50: 664
    • 1f Wright SW, Hageman DL, McClure LD. J. Org. Chem. 1994; 59: 6095
    • 1g Old DW, Wolfe JP, Buchwald ST. J. Am. Chem. Soc. 1998; 120: 9722
    • 1h Littke AF, Fu GC. Angew. Chem. Int. Ed. 1998; 37: 3387
    • 1i Littke AF, Dai C, Fu GC. J. Am. Chem. Soc. 2000; 122: 4020
    • 1j Batey RA, Quach TD. Tetrahedron Lett. 2001; 42: 9099
    • 1k Molander GA, Ito T. Org. Lett. 2001; 3: 393
    • 1l Molander GA, Biolatto B. Org. Lett. 2002; 4: 1867
    • 1m Molander GA, Biolatto B. J. Org. Chem. 2003; 68: 4302
    • 1n Yuen AK. L, Hutton CA. Tetrahedron Lett. 2005; 46: 7899
    • 1o Butters M, Harvey JN, Jover J, Lennox AJ. J, Lloyd-Jones GC, Murray PM. Angew. Chem. Int. Ed. 2010; 49: 5156
    • 2a Hatanaka Y, Hiyama T. Tetrahedron Lett. 1988; 29: 97
    • 2b Goda K-i, Hagiwara E, Hatanaka Y, Hiyama T. J. Org. Chem. 1996; 61: 7232
    • 2c Shibata K, Miyazawa K, Goto Y. Chem. Commun. 1997; 1309
    • 2d Mowery E, DeShong P. Org. Lett. 1999; 1: 2137
    • 2e Lee HM, Nolan SP. Org. Lett. 2000; 2: 2053
    • 2f Molander GA, Iannazzo L. J. Org. Chem. 2011; 76: 9182

    • For reviews, see:
    • 2g Hatanaka Y, Hiyama T. Synlett 1991; 845
    • 2h Hiyama T, Shirakawa E. Organosilicon Compounds. In Topics in Current Chemistry. Vol. 219. Springer; Heidelberg: 2002: 61
    • 2i Hatanaka Y, Goda K-i, Okahara Y, Hiyama T. Tetrahedron 1994; 50: 8301
    • 2j Hatanaka Y, Hiyama T. J. Am. Chem. Soc. 1990; 112: 7793
    • 2k Sugiyama A, Ohnishi Y-y, Nakaoka M, Nakao Y, Sato H, Sakaki S, Nakao Y, Hiyama T. J. Am. Chem. Soc. 2008; 130: 12975
    • 3a Littke AF, Fu GC. Angew. Chem. Int. Ed. 1999; 38: 2411
    • 3b Grasa GA, Nolan SP. Org. Lett. 2001; 3: 119
    • 3c Littke AF, Schwarz L, Fu GC. J. Am. Chem. Soc. 2002; 124: 6343
    • 3d Su W, Urgaonkar S, McLaughlin PA, Verkade JG. J. Am. Chem. Soc. 2004; 126: 16433
    • 3e Echavarren A. Angew. Chem. Int. Ed. 2005; 44: 3962
    • 3f For reactions of preformed [R′3SnF2], see: Garcia Martinez A, Osio Barcina J, Colorado Heras M, de Fresno Cerezo A. Organometallics 2001; 20: 1020
    • 3g Naber JR, Buchwald SL. Adv. Synth. Catal. 2008; 350: 957
    • 3h For DFT calculations on the role of fluoride ions, see: Ariafard A, Yates BF. J. Am. Chem. Soc. 2009; 131: 13891
    • 4a Fraser SL, Antipin MY, Khroustalyov VN, Grushin VV. J. Am. Chem. Soc. 1997; 119: 4769
    • 4b Pilon MC, Grushin VV. Organometallics 1998; 17: 1774
    • 4c The complex trans-p-CN-C6H4–PdF(PPh3)2 was synthesized (66% yield) by reacting AgF with [p-CN-C6H4–Pd(μ-I)(PPh3)]2 in the presence of PPh3 (2 equiv per Pd) and well-characterized: 31P NMR (101 MHz, CD2Cl): δ = 19.38 (d, J FP = 12 Hz); 19F NMR (235 MHz, CD2Cl2, CFCl3): δ = –281.67 (tt, J FP = 12 Hz, J FH = 2 Hz) (see ref. 5).
  • 5 Amatore C, Jutand A, Le Duc G. Angew. Chem. Int. Ed. 2012; 51: 1379
    • 6a For the use of electrochemical techniques to investigate the mechanism of reactions catalyzed by transition metals, see: Jutand A. Chem. Rev. 2008; 108: 2300
    • 6b Electrochemical experiments require a supporting electrolyte so that they are performed at high ionic strength. This mimics catalytic reactions which are always performed at high ionic strength due to continuous release of halide ions from ArX in the course of the reactions and the presence of additives such as fluoride ions in a large excess. The electrochemical experiments are thus performed under experimental conditions that are close to those of the related catalytic reactions.

      For the characterization of trans-ArPdAr′(PPh3)2 complexes, see:
    • 7a Adamo C, Amatore C, Ciofini I, Jutand A, Lakmini H. J. Am. Chem. Soc. 2006; 128: 6829
    • 7b Ref. 8.
    • 8a Amatore C, Jutand A, Le Duc G. Chem. Eur. J. 2011; 17: 2492
    • 8b Amatore C, Jutand A, Le Duc G. Chem. Eur. J. 2013; 19: 10082

      For reductive elimination induced by a fifth ligand in square planar d10 complexes, see:
    • 9a Giovannini R, Knochel P. J. Am. Chem. Soc. 1998; 120: 11186
    • 9b d’Orlyé F, Jutand A. Tetrahedron 2005; 61: 9670
    • 9c Jarvis AG, Fairlamb IJ. S. Curr. Org. Chem. 2011; 15: 3175
    • 9d For favored reductive eliminations performed from pentacoordinated anionic PdII complexes, see: Gramage-Doria R, Armspach D, Matt D, Toupet L. Chem. Eur. J. 2012; 18: 10813
    • 10a A similar law was determined in ref. 8, in which hydroxides were found to play a similar role to fluoride ions leading to bell-shaped curves for the variation of kobs vs the hydroxide concentration.
    • 10b The concentration of X varies from 0 to C0 during the reaction. An average value of C0/2 is considered.
  • 11 Amatore C, Grimaud L, Le Duc G, Jutand A. Angew. Chem. Int. Ed. 2014; 53: 6982
  • 12 Hervé M, Lefèvre G, Mitchell EA, Maes BU. W, Jutand A. Chem. Eur. J. 2015; 21: 18401