Synlett 2017; 28(03): 323-326
DOI: 10.1055/s-0036-1588650
letter
© Georg Thieme Verlag Stuttgart · New York

Differentially Substituted Phenylene-Containing Oligoacene Derivatives

Sarah P. Luppino
Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA   Email: tswager@mit.edu
,
Timothy M. Swager*
Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA   Email: tswager@mit.edu
› Author Affiliations
Further Information

Publication History

Received: 18 September 2016

Accepted after revision: 19 October 2016

Publication Date:
09 November 2016 (online)


Abstract

We report the synthesis and characterization of seven new linearly conjugated ladder compounds of the phenylene-containing oligoacene molecule class. Each derivative incorporates a fused four-membered-ring linkage in the acene-like backbone. Crystal packing, spectroscopic and electrochemical properties of the molecules are described.

Supporting Information

 
  • References and Notes

  • 1 Anthony JE. Angew. Chem. Int. Ed. 2008; 47: 452
  • 2 Mishra A, Bäuerle P. Angew. Chem. Int. Ed. 2012; 51: 2020
  • 3 Reddy AR, Bendikov M. Chem. Commun. 2006; 1179
  • 4 Parkhurst RR, Swager TM. J. Am. Chem. Soc. 2012; 134: 15351
  • 5 Schleifenbaum A, Feeder N, Vollhardt KP. C. Tetrahedron Lett. 2001; 42: 7329
  • 6 Buckland PR, Hacker NP, McOmie JF. W. J. Chem. Soc., Perkin Trans. 1 1983; 1443
  • 7 Helson HE, Vollhardt PC, Yang Z.-Y. Angew. Chem., Int. Ed. Engl. 1985; 24: 114
  • 8 Barton JW, Shepherd MK, Willis RJ. J. Chem. Soc., Perkin Trans. 1 1986; 967
  • 9 Yang S, Liu D, Xu X, Miao Q. Chem. Commun. 2015; 51: 4275
  • 10 Biegger P, Schaffroth M, Patze C, Tverskoy O, Rominger F, Bunz UH. F. Chem. Eur. J. 2015; 21: 7048
  • 11 Holmes D, Kumaraswamy S, Matzger AJ, Vollhardt KP. C. Chem. Eur. J. 1999; 5: 3399
  • 12 Kaupp G, Grüter H.-W, Teufel E. Chem. Ber. 1983; 116: 618
  • 13 Coller BA. W, Heffernan ML, Jones AJ. Aust. J. Chem. 1968; 21: 1807
  • 14 Huntsman WD, Wristers HJ. J. Am. Chem. Soc. 1963; 85: 3308
  • 15 Huntsman WD, Wristers HJ. J. Am. Chem. Soc. 1967; 89: 342
  • 16 Blomquist AT, Maitlis PM. Proc. Chem. Soc. 1961; 332
  • 17 Hopf H. Angew. Chem., Int. Ed. Engl. 1970; 9: 732
  • 18 Toda F, Garratt P. Chem. Rev. 1992; 92: 1685
  • 19 Hart H, Lai C.-Y, Nwokogu G, Shamouilian S, Teuerstein A, Zlotogorski C. J. Am. Chem. Soc. 1980; 102: 6649
  • 20 Example Procedure (Synthesis of 3e) In a flame-dried 50 mL Schlenk flask, 1 (100 mg, 0.29 mmol) and 2e (54 mg, 0.29 mmol) were dissolved in dry toluene (15 mL) and stirred at 100 °C under argon for 15 min. Isoamyl nitrite (38 μL, 0.29 mmol) was then added dropwise, and the solution was stirred for 1 h, then slowly cooled to r.t. The solution was evaporated under reduced pressure, and the dried reaction mixture was crudely purified by column chromatography (SiO2, gradient of CH2Cl2–hexanes, 1:9 to 3:7 to 100% CH2Cl2) as an off-white solid. Aromatization was carried out by adding DDQ (85 mg, 0.37 mmol) and dissolving in anhydrous benzene (5 mL). The flask was purged 15 min with argon and then was heated to 75 °C for 40 h. The product was purified by flash column chromatography (SiO2, gradient of CH2Cl2–hexanes, 1:3 to 1:1) to yield 60 mg (44% yield). 1H NMR (400 MHz, CDCl3): δ = 8.19 (s, 2 H), 7.86 (dd, J = 6.6 Hz, 3.2 Hz, 2 H), 7.79 (d, J = 7.6 Hz, 4 H), 7.53 (t, J = 7.3 Hz, 4 H), 7.45 (Ψt, J = 7.3 Hz, 4 H), 7.36 (dd, J = 6.6 Hz, 3.2 Hz, 2 H), 7.29 (s, 2 H), 7.21 (m, 2 H), 7.13 (m, 2 H), 4.39 (s, 2 H). 13C NMR (100 MHz, CDCl3): δ = 148.2, 140.6, 136.7, 132.9, 131.1, 128.6, 128.1, 128.0, 127.2, 127.1, 126.5, 125.0, 120.7, 119.6, 89.9, 55.2. To Access the fully Unsaturated Counterpart 4e In a flame-dried 10 mL Schlenk flask, 3e (50 mg, 0.1 mmol) was dissolved in 5 mL Ac2O with p-TsOH (255 mg, 1.48 mmol). The solution was heated to 100 °C for 3 h. The solution changed from a light yellow color to a red-yellow color. The product was precipitated by pouring over ice, and adding water until a solid precipitate formed. The product was filtered and dried overnight under vacuum, affording 48 mg of an orange-yellow solid (99% yield). 1H NMR (400 MHz, CDCl3): δ = 8.00 (s, 2 H), 7.97 (dd, J = 6.3, 3.3 Hz, 2 H), 7.81 (dd, J = 6.3, 3.3 Hz, 2 H), 7.73 (m, 4 H), 7.62 (m, 4 H), 7.52 (m, 2 H), 7.38 (m, 4 H), 7.19 (s, 2 H). 13C NMR (100 MHz, CDCl3): δ = 145.0, 143.8, 136.7, 134.7, 133.5, 132.3, 130.5, 129.9, 128.9, 128.1, 128.0, 127.3, 127.0, 126.6, 125.8, 116.2.
  • 21 Turro NJ In Modern Molecular Photochemistry . University Science Books; Sausalito, CA: 1991: 125-126
  • 22 Malkin J In Photophysical and Photochemical Properties of Aromatic Compounds . CRC Press; Boca Raton, FL: 1992: 90-94