Synlett 2017; 28(13): 1601-1607
DOI: 10.1055/s-0036-1588801
letter
© Georg Thieme Verlag Stuttgart · New York

Thieme Chemistry Journals Awardees – Where Are They Now?
Rhodium-Catalyzed Synthesis of Unsymmetric Di(heteroaryl) Ethers Using Heteroaryl Exchange Reaction

Saori Tanii
Department of Organic Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Sendai, 980-8578, Japan   Email: yama@m.tohoku.ac.jp   Email: arisawa@m.tohoku.ac.jp
,
Mieko Arisawa*
Department of Organic Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Sendai, 980-8578, Japan   Email: yama@m.tohoku.ac.jp   Email: arisawa@m.tohoku.ac.jp
,
Takaya Tougo
Department of Organic Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Sendai, 980-8578, Japan   Email: yama@m.tohoku.ac.jp   Email: arisawa@m.tohoku.ac.jp
,
Kiyofumi Horiuchi
Department of Organic Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Sendai, 980-8578, Japan   Email: yama@m.tohoku.ac.jp   Email: arisawa@m.tohoku.ac.jp
,
Masahiko Yamaguchi*
Department of Organic Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Sendai, 980-8578, Japan   Email: yama@m.tohoku.ac.jp   Email: arisawa@m.tohoku.ac.jp
› Author Affiliations
Further Information

Publication History

Received: 02 March 2017

Accepted after revision: 26 March 2017

Publication Date:
27 April 2017 (online)


Abstract

Unsymmetric di(heteroaryl) ethers were synthesized by the rhodium-catalyzed heteroaryl exchange reaction of heteroaryl aryl ethers and heteroaryl esters at equilibrium. Diverse unsymmetric di(heteroaryl) ethers containing five- and six-membered heteroarenes were obtained. Di(heteroaryl) ethers can be synthesized starting from diaryl ethers, because heteroaryl aryl ethers are obtained by the heteroaryl exchange reaction of diaryl ethers.

Supporting Information

 
  • References and Notes

  • 1 Tynebor RM. Chen M.-H. Natarajan SR. O’Neill EA. Thompson JE. Fitzgerald CE. O’Keefe SJ. Doherty JB. Bioorg. Med. Chem. Lett. 2011; 21: 411
    • 2a AMG 458: Liu L. Siegmund A. Xi N. Kaplan-Lefko P. Rex K. Chen A. Lin J. Moriguchi J. Berry L. Huang L. Teffera Y. Yang Y. Zhang Y. Bellon SF. Lee M. Shimanovich R. Bak A. Dominguez C. Norman MH. Harmange J.-C. Dussault I. Kim T.-S. J. Med. Chem. 2008; 51: 3688
    • 2b Peace S. Philp J. Brooks C. Piercy V. Moores K. Smethurst C. Watson S. Gaines S. Zippoli M. Mookherjee C. Ife R. Bioorg. Med. Chem. Lett. 2010; 20: 3961
    • 3a Che YL. Braselton J. Forman J. Gallaschun RJ. Mansbach R. Schmidt AW. Seeger TF. Sprouse JS. Tingley III FD. Winston E. Schulz DW. J. Med. Chem. 2008; 51: 1377
    • 3b Voisin AS. Bouillon A. Lancelot J.-C. Lesnard A. Rault S. Tetrahedron 2006; 62: 6000

    • Exceptionally, substitution reaction of 2,5-dinitrofuran and 3-hydroxypyridine was reported:
    • 3c Gavade S. Padiya K. Bajare S. Balaskar R. Mane D. J. Heterocycl. Chem. 2011; 48: 458

    • Reaction of 2-chloro-1,3-oxazolyl compound and 3-hydroxypyridine:
    • 3d Oka Y. Yabuuchi T. Fujii Y. Ohtake H. Wakahara S. Matsumoto K. Endo M. Tamura Y. Sekiguchi Y. Bioorg. Med. Chem. Lett. 2012; 22: 7534

      Copper-catalyzed reaction:
    • 4a Reddy KU. M. Kumar KS. Reddy AP. Asian J. Chem. 2014; 26: 4747
    • 4b Maiti D. Buchwald SL. J. Org. Chem. 2010; 75: 1791
    • 4c Altman RA. Buchwald SL. Org. Lett. 2007; 9: 643
    • 4d Barker DJ. Summers LA. J. Heterocycl. Chem. 1983; 20: 1411

    • Reaction of 2-bromopyridine and water:
    • 4e Tlili A. Monnier F. Taillefer M. Chem. Eur. J. 2010; 16: 12299

    • Cobalt-catalyzed reaction:
    • 4f Kundu D. Tripathy M. Maity P. Ranu BC. Chem. Eur. J. 2015; 21: 8727

    • Palladium-catalyzed reaction:
    • 4g Zhang T. Tudge MT. Tetrahedron Lett. 2015; 56: 2329
    • 4h Platon M. Cui L. Mom S. Richard P. Saeys M. Hierso J.-C. Adv. Synth. Catal. 2011; 353: 3403
    • 5a Rodrigues N. Boiaryna L. Vercouillie J. Guilloteau D. Suzenet F. Buron F. Routier S. Eur. J. Org. Chem. 2016; 5024
    • 5b Londregan AT. Jennings S. Wei L. Org. Lett. 2011; 13: 1840
    • 6a Wacharasindhu S. Bardhan S. Wan Z.-K. Tabei K. Mansour TS. J. Am. Chem. Soc. 2009; 131: 4174
    • 6b Bardhan S. Wacharasindhu S. Wan Z.-K. Mansour TS. Org. Lett. 2009; 11: 2511
    • 6c Bardhan S. Tabei K. Wan Z.-K. Mansour TS. Tetrahedron Lett. 2009; 50: 5733
    • 7a Arisawa M. Tazawa T. Tanii S. Horiuchi K. Yamaguchi M. J. Org. Chem. 2017; 82: 804
    • 7b Li G. Arisawa M. Yamaguchi M. Chem. Commun. 2014; 50: 4328
    • 7c Arisawa M. Tanii S. Tazawa T. Yamaguchi M. Chem. Commun. 2016; 52: 11390

      It was reported that diphenyl ether can be synthesized by dehydration of phenol, and heteroaryl aryl ethers and di(heteroaryl) ethers can, in principle, be obtained from phenols without using a base:
    • 8a Zsolczai D. Németh J. Hell Z. Tetrahedron Lett. 2015; 56: 6389
    • 8b Buske GR. Garces JM. Dianis WP. US 5288922, 1994
    • 8c Karuppannasamy S. Narayanan K. Pillai CN. J. Catal. 1980; 66: 281
  • 9 General Procedure for the Synthesis of Unsymmetric Di(heteroaryl) Ethers In a two-necked flask equipped with a magnetic stirrer bar and a reflux condenser were placed RhH(PPh3)4 (5 mol%, 14.4 mg), dppBz (10 mol%, 11.1 mg), 2-phenoxy-1,3-benzothiazole (2a, 0.75 mmol, 170.5 mg), and pyridine-3-yl benzoate (9, 0.25 mmol, 49.8 mg) in chlorobenzene (0.5 mL) under an argon atmosphere, and the solution was stirred and heated at reflux for 5 h. The solvent was removed under reduced pressure, and the residue was purified by flush column chromatography on silica gel giving 2-(3-pyridinyloxy)-1,3-benzothiazole (10, 69%, 39.4 mg) and phenylbenzoate (11, 70%, 34.7 mg) with recovery of 2a (73%, 124.4 mg) and 9 (25%, 12.5 mg). Analytical Data of Compound 10 Colorless solid; mp 63.0–64.0 °C (hexane). 1H NMR (400 MHz, CDCl3): δ = 7.31 (1 H, td, J = 1.2, 8.0 Hz), 7.41 (2 H, t, J = 8.0 Hz), 7.72 (2 H, m), 7.82 (1 H, ddd, J = 1.6, 3.2, 8.4 Hz), 8.56 (1 H, dd, J = 1.2, 4.8 Hz), 8.73 (1 H, d, J = 2.8 Hz). 13C NMR (100 MHz, CDCl3): δ = 121.4, 121.9, 124.2, 124.5, 126.4, 128.0, 132.3, 142.7, 147.0, 148.7, 151.2, 170.8. IR (KBr) 3060, 1527, 1475, 1440, 1428, 1256, 1235, 1021 cm–1. MS (EI): m/z (%) = 228 (100) [M+], 200 (50) [M+ – CN]. HRMS: m/z calcd for C12H8N2OS: 228.0357; found: 228.0343.
  • 10 You F. Twieg RJ. Tetrahedron Lett. 1999; 40: 8759
  • 11 Crystallographic data including structure factors have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication number CCDC 1534272 for compound 14u. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
  • 12 For a related observation see: Sawatlon B. Wititsuwannakul T. Tantirungrotechai Y. Surawatanawong P. Dalton Trans. 2014; 43: 18123