Synlett 2017; 28(08): 913-918
DOI: 10.1055/s-0036-1588929
letter
© Georg Thieme Verlag Stuttgart · New York

Radical Cyclopropanol Ring Opening Initiated Tandem Cyclizations for Efficient Synthesis of Phenanthridines and Oxindoles

Dexter C. Davis
Department of Chemistry and Center for Cancer Research, Purdue University, West Lafayette, Indiana, 47907, USA   Email: mjdai@purdue.edu
,
Christopher W. Haskins
Department of Chemistry and Center for Cancer Research, Purdue University, West Lafayette, Indiana, 47907, USA   Email: mjdai@purdue.edu
,
Mingji Dai*
Department of Chemistry and Center for Cancer Research, Purdue University, West Lafayette, Indiana, 47907, USA   Email: mjdai@purdue.edu
› Author Affiliations
Further Information

Publication History

Received: 21 October 2016

Accepted after revision: 02 December 2016

Publication Date:
10 January 2017 (online)


Abstract

β-Keto radicals can be readily generated from single-electron oxidation and ring opening of cyclopropanols. Herein, we report new ways of trapping β-keto radicals derived from Mn(III)-mediated oxidative cyclopropanol ring opening with biaryl isonitriles and N-aryl acrylamides derived from anilines. Through tandem radical cyclization processes, substituted phenanthridines and oxindoles can be synthesized in one step and good to excellent yield. These new synthetic methods feature broad substrate scope and mild reaction conditions, efficiently form two carbon–carbon bonds, and use cheap and commercially available manganese salts as oxidants. Concomitant installation of ketone functionality in the final products provides a handle for further functionalization of these important and biologically relevant scaffolds.

Supporting Information

 
  • References and Notes

    • 1a Davis DC, Walker KL, Hu C, Zare RN, Waymouth RM, Dai MJ. J. Am. Chem. Soc. 2016; 138: 10693
    • 1b Li Y, Ye Z, Bellman TM, Chi T, Dai M. Org. Lett. 2015; 17: 2186
    • 1c Ye Z, Dai M. Org. Lett. 2015; 17: 2190
    • 1d Ye Z, Gettys KE, Shen X, Dai M. Org. Lett. 2015; 17: 6074
    • 3a Hasegawa E, Nemoto K, Nagumo R, Tayama E, Iwamoto H. J. Org. Chem. 2016; 81: 2692
    • 3b Ito Y, Fujii S, Saegusa T. J. Org. Chem. 1976; 41: 2073
    • 3c U, J. S. Lee J, Cha JK. Tetrahedron Lett. 1997; 38: 5233
    • 3d Hasegawa E, Tateyama M, Nagumo R, Tayama E, Iwamoto H. Beilstein J. Org. Chem. 2013; 9: 1397
    • 3e Snider BB, Kwon T. J. Org. Chem. 1992; 57: 2399
    • 4a Wang Y.-F, Chiba S. J. Am. Chem. Soc. 2009; 131: 12570
    • 4b Wang Y.-F, Toh KK, Ng EP. J, Chiba S. J. Am. Chem. Soc. 2011; 133: 6411
    • 4c Iwasawa N, Hayakawa S, Funahashi M, Isobe K, Narasaka K. Bull. Chem. Soc. Jpn. 1993; 66: 819
    • 4d Chiba S, Cao Z, El Bialy SA. A, Narasaka K. Chem. Lett. 2006; 35: 18
    • 4e Ilangovan A, Saravanakumar S, Malayappasamy S. Org. Lett. 2013; 15: 4968
    • 5a Wang S, Guo L.-N, Wang H, Duan X.-H. Org. Lett. 2015; 17: 4798
    • 5b Kananovich DG, Konik YA, Zubrytski DM, Järving I, Lopp M. Chem. Commun. 2015; 51: 8349
    • 6a Jiao J, Nguyen LX, Patterson DR, Flowers RA II. Org. Lett. 2007; 9: 1323
    • 6b Zhao H, Fan X, Yu J, Zhu C. J. Am. Chem. Soc. 2015; 137: 3490
    • 6c Bloom S, Bume DD, Pitts CR, Lectka T. Chem. Eur. J. 2015; 13: 8060
    • 6d Ren S, Feng C, Loh T.-P. Org. Biomol. Chem. 2015; 13: 5105
    • 6e Huang F.-Q, Xie J, Sun J.-G, Wang Y.-W, Dong X, Qi L.-W, Zhang B. Org. Lett. 2016; 18: 684
    • 6f Bume DD, Pitts CR, Lectka T. Eur. J. Org. Chem. 2016; 26
    • 7a Curran DP, Liu H. J. Am. Chem. Soc. 1992; 114: 5863
    • 7b Curran DP, Ko S.-B, Josien H. Angew. Chem., Int. Ed. Engl. 1996; 34: 2683
    • 7c Nanni D, Pareschi P, Rizzoli C, Sgarabotto P, Tundo T. Tetrahedron 1995; 51: 9045
    • 7d Yamago S, Miyazoe H, Coto R, Hashidume M, Sawazaki T, Yoshida I. J. Am. Chem. Soc. 2001; 123: 3697
    • 7e Janza B, Studer A. Org. Lett. 2006; 8: 1875
    • 7f Mitamura T, Iwata K, Ogawa A. J. Org. Chem. 2011; 76: 3880
    • 7g Tobisu M, Koh K, Furukawa T, Chatani N. Angew. Chem. Int. Ed. 2012; 51: 11363
    • 7h Wang Q, Dong X, Xiao T, Zhou L. Org. Lett. 2013; 15: 4846
    • 7i Zhang B, Mück-Lichtenfeld C, Daniliuc CG, Studer A. Angew. Chem. Int. Ed. 2013; 52: 10792
    • 7j Leifert D, Daniliuc CG, Studer A. Org. Lett. 2013; 15: 6286
    • 7k Wang Q, Dong X, Xiao T, Zhou L. Org. Lett. 2013; 15: 4846
    • 7l Jiang H, Cheng YZ, Wang RZ, Zheng MM, Zhang Y, Yu SY. Angew. Chem. Int. Ed. 2013; 52: 13289
    • 7m Cao JJ, Wang X, Wang SY, Ji SJ. Chem. Commun. 2014; 50: 4643
    • 7n Gu LJ, Jin C, Liu JY, Ding HY, Fan BM. Chem. Commun. 2014; 50: 4643
    • 7o Xia ZH, Huang JB, He YM, Zhao JJ, Lei J, Zhu Q. Org. Lett. 2014; 16: 2546
    • 7p Xiao TB, Li LY, Lin GL, Wang QL, Zhang P, Mao ZW, Zhou L. Green. Chem. 2014; 16: 2418
    • 7q Zhang B, Daniliuc CG, Studer A. Org. Lett. 2014; 16: 250
    • 7r Cao JJ, Zhu TH, Wang SY, Gu ZY, Wang X, Ji S. Chem. Commun. 2014; 50: 6439
    • 7s Wang L, Sha WX, Dai Q, Feng XM, Wu WT, Peng HB, Chen B, Cheng J. Org. Lett. 2014; 16: 2088
    • 7t Li ZJ, Fan FH, Yang J, Liu ZQ. Org. Lett. 2014; 16: 3396
    • 7u Sha WX, Yu JT, Jiang Y, Yang HT, Cheng J. Chem. Commun. 2014; 50: 9179
    • 7v Zhu ZQ, Wang TT, Bai P, Huang ZZ. Org. Biomol. Chem. 2014; 12: 5839
    • 7w Lu S, Gong Y, Zhou D. J. Org. Chem. 2015; 80: 9336
    • 7x Pan C, Zhang H, Han J, Cheng Y, Zhu C. Chem. Commun. 2015; 51: 3786
    • 7y Zhou Y, Wu C, Dong X, Qu J. J. Org. Chem. 2016; 81: 5202

      For reviews, see:
    • 8a Chen J.-R, Yu X.-Y, Xiao W.-J. Synthesis 2015; 47: 604
    • 8b Yu J.-T, Pan C. Chem. Commun. 2016; 52: 2220
    • 8c Song R.-J, Liu Y, Xie Y.-X, Li J.-H. Synthesis 2015; 47: 1195

    • For selected examples:
    • 8d Wei W.-T, Zhou M.-B, Fan J.-H, Liu W, Song R.-J, Liu Y, Hu M, Xie P, Li J.-H. Angew. Chem. Int. Ed. 2013; 52: 3638
    • 8e Biswas P, Paul S, Guin J. Angew. Chem. Int. Ed. 2016; 55: 7756
    • 8f Kong W, Casimiro M, Fuentes N, Merino E, Nevado C. Angew. Chem. Int. Ed. 2013; 52: 13086
    • 8g Wang H, Guo L.-N, Duan X.-H. Org. Lett. 2013; 15: 5254
    • 8h Li Z, Zhang Y, Zhang L, Liu Z.-Q. Org. Lett. 2014; 16: 382
    • 8i Xu Z, Yan C, Liu Z.-Q. Org. Lett. 2014; 16: 5670
    • 8j Pan C, Zhang H, Zhu C. Org. Biomol. Chem. 2015; 13: 361
    • 8k Qiu J.-K, Jiang B, Zhu Y.-L, Hao W.-J, Wang D.-C, Sun J, Wei P, Tu S.-J, Li G. J. Am. Chem. Soc. 2015; 137: 8928
    • 9a Ali AA, El Sayed HM, Abdallah OM, Steglich W. Phytochemistry 1986; 25: 2399
    • 9b Viladomat F, Bastida J, Tribo G, Codina C, Rubiralta M. Phytochemistry 1990; 1307
    • 9c Ishikawa T. Med. Res. Rev. 2001; 21: 61
    • 9d Simeon S, Rios JL, Villar A. Pharmazie 1989; 44: 593
    • 9e Phillips SD, Castle RN. J. Heterocycl. Chem. 1981; 18: 223
    • 9f Abdel-Halim OB, Morikawa T, Ando S, Matsuda H, Yoshikawa M. J. Nat. Prod. 2004; 67: 1119
    • 9g Sripada L, Teske JA, Deiters A. Org. Biomol. Chem. 2008; 6: 263
    • 9h Nakanishi T, Suzuki M. Org. Lett. 1999; 1: 985
    • 9i Zuo GY, MEng FY, Hao XY, Zhang YL, Wang GC, Xu GL. J. Pharm. Pharm. Sci. 2008; 11: 90
    • 9j Su G, Pan C, Feng K, Dai Z, Qin J, Tang H, Liu H. CN102887904A, 2013
    • 9k Buyanov VN, Barberkina YP, Samoilova MY, Akhvlediani RN, Frolova YP, Kurkovskaya LN, Yershova YA, Safonova TS, Korovin BV, Suvorov NN. Khim.-Farm. Zh. 1994; 28: 10
    • 9l Tumir L.-M, Piantanida I, Juranović I, Meić Z, Tomić S, Žinić M. Chem. Commun. 2005; 2561
    • 9m Dukši M, Baretić D, Čaplar V, Piantanida I. Eur. J. Med. Chem. 2010; 45: 2671
    • 9n Stevens N, O’Connor N, Vishwasrao H, Samaroo D, Kandel ER, Akins DL, Drain CM, Turro NJ. J. Am. Chem. Soc. 2008; 130: 7182
    • 9o Stojković MR, Miljanić S, Mišković K, Glavaš-Obrovac L, Piantanida I. Mol. BioSyst. 2011; 7: 1753
    • 10a Taber DF, Tirunahari PK. Tetrahedron 2011; 67: 7195
    • 10b Badillo JJ, Hanhan NV, Franz AK. Curr. Opin. Drug Discovery Dev. 2010; 13: 758
    • 10c Fensome A, Adams WR, Adams AL, Berrodin TJ, Cohen J, Huselton C, Illenberger A, Kern JC, Hudak VA, Marella MA, Melenski EG, McComas CC, Mugford CA, Slayden OD, Yudt M, Zhang Z, Zhang P, Zhu Y, Winneker RC, Wrobel JE. J. Med. Chem. 2008; 51: 1861
    • 10d Kumari G, Nutan Modi M, Gupta SK, Singh RK. Eur. J. Med. Chem. 2011; 46: 1181
    • 10e Lo MM.-C, Newmann CS, Nagayams S, Perlstein EO, Schreiber SL. J. Am. Chem. Soc. 2004; 126: 16077
    • 10f Ding K, Lu Y, Nikolovska-Coleska Z, Qui S, Ding Y, Gao W, Stuckey J, Krajewski K, Roller PP, Tomita Y, Parrish DA, Deschamps JR, Wang S. J. Am. Chem. Soc. 2005; 127: 10130
    • 10g Vintonyak VV, Warburg K, Kruse H, Grimme S, Hübel K, Rauh D, Waldmann H. Angew. Chem. Int. Ed. 2010; 49: 5902
    • 10h Yeung BK. S, Zou B, Rottmann M, Lakshmninarayana SB, Ang SH, Leong SY, Tan J, Wong J, Keller-Maerki S, Fischli C, Goh A, Schmitt EK, Krastel P, Francotte E, Kuhen K, Plouffe D, Henson K, Wagner T, Winzeler EA, Petersen F, Brun R, Dartois V, Diagana TT, Keller TH. J. Med. Chem. 2010; 53: 5155
    • 10i Ding K, Lu Y, Nikolovska-Coleska Z, Wang G, Qiu S, Shangary S, Gao W, Qin D, Stukey J, Krajewski K, Roller PP, Wang S. J. Med. Chem. 2006; 49: 3432
    • 10j James MN, Williams GJ. B. Can. J. Chem. 1972; 25: 1473
    • 10k Jossang A, Jossang P, Hamid A, Sevenet T, Bodo B. J. Org. Chem. 1991; 56: 6527
    • 10l Anderton N, Cockrum PA, Cologate SM, Edgar JA, Flower K, Vit I, Willing RI. Phytochemistry 1998; 48: 437
    • 10m Shi J.-S, Yu J.-X, Chen X.-P, Xu R.-X. Acta. Pharm. Sin. 2003; 24: 97
    • 10n Zhou J, Zhou S. J. Ethnopharmacol. 2010; 132: 15
    • 10o Chou C.-H, Gong C.-L, Chao CC, Lin C.-H, Kwan C.-Y, Hsieh C.-L, Leung YM. J. Nat. Prod. 2009; 72: 830
    • 10p Galliford CV, Scheidt KA. Angew. Chem. Int. Ed. 2007; 46: 8748
  • 11 Formation of phenanthridine was also noted by Chatani, who found that its formation could also be promoted by AlCl3, suggesting a Lewis acid based mechanism. See: Tobisu M, Koh K, Furukawa T, Chatani N. Angew. Chem. Int. Ed. 2012; 51: 11363
  • 12 Kulinkovich OG, Astashko DA, Tyvorskii VI, Ilyina NA. Synthesis 2001; 1453
  • 13 Representative Procedure for the Phenanthridine Synthesis An argon-degassed solution of cyclopropanol 1 (1 equiv) in t-BuOH (0.02 M) was added dropwise over 2 h to an argon-degassed, stirred solution of 2-isocyano biphenyl 2 (2 equiv) and manganese(III) acetylacetonate (2.2 equiv) in t-BuOH (0.042 M) at 26 °C. The resulting solution (0.01 M with respect to the cyclopropanol) was stirred for an additional 5 min before the solvent was removed under reduced pressure, and the resulting residue purified by flash chromatography to yield the desired 2-substituted phenanthradine 3. Compound 3aa was prepared according to the above procedure using 1a (0.125 mmol, 31 mg) and 2a (0.25 mmol, 45 mg) and isolated as a yellow solid (43 mg, 83%) following flash chromatography (hexanes–EtOAc, 10:1). 1H NMR (500 MHz, CDCl3): δ = 8.62 (d, J = 8.3 Hz, 1 H), 8.52 (d, J = 8.0 Hz, 1 H), 8.27 (d, J = 8.2 Hz, 1 H), 8.05 (d, J = 7.5 Hz, 1 H), 7.82 (t, J = 7.5 Hz, 1 H), 7.69 (t, J = 7.85 Hz, 2 H), 7.61 (t, J = 7.35 Hz, 1 H), 3.69 (t, J = 6.8 Hz, 2 H), 3.64 (t, J = 6.4 Hz, 2 H), 3.16 (t, J = 6.9 Hz, 2 H), 2.70 (t, J = 7.4 Hz, 2 H), 1.73 (quin, J = 7.7 Hz, 2 H), 1.58 (quin, J = 6.9 Hz, 2 H), 0.90 (s, 9 H), 0.06 (s, 6 H). 13C NMR (125 MHz, CDCl3): δ = 210.9, 159.7, 143.7, 132.8, 130.5, 129.7, 128.7, 127.6, 126.5, 125.9, 125.6, 123.9, 122.6, 122.1, 63.1, 43.3, 39.5, 32.6, 29.2, 26.2, 20.6, 18.5, –5.1. IR (neat): 2964, 2903, 1666, 1578, 1393, 1238, cm–1. ESI-MS: m/z calcd for C26H25NO2Si [M + H]+: 422.24; found: 422.2.
  • 14 Representative Procedure for the 2-Oxindole Synthesis An argon-degassed solution of cyclopropanol 1 (2 equiv) in t-BuOH (0.0625 M) was added dropwise over 3 h to an argon-degassed, stirred solution of acrylamide 4 (1 equiv) and manganese(III) acetylacetonate (2.2 equiv) in t-BuOH (0.114 M) at 26 °C. The resulting solution (0.03 M with respect to the cyclopropanol) was stirred for an additional 5 min before the solvent was removed under reduced pressure and the resulting residue purified by flash chromatography to yield the desired oxindole. Compound 5aa was prepared according to the above procedure using 4a (0.125 mmol, 22 mg) and 1a (0.25 mmol, 62 mg) and isolated as a yellow oil (38 mg, 72%) following flash chromatography (hexanes–EtOAc, 6:1). 1H NMR (400 MHz, CDCl3): δ = 7.25 (t, J = 7.7 Hz, 1 H), 7.17 (d, J = 7.3 Hz, 1 H), 7.05 (t, J = 8.2 Hz, 1 H), 6.83 (d, J =7.8 Hz, 1 H), 3.56 (t, J = 6.2 Hz, 2 H), 3.20 (s, 3 H), 2.30 (t, J = 7.5 Hz, 2 H), 2.26 (q, J = 7.2 Hz, 2 H), 1.70–1.86 (m, 2 H), 1.49–1.57 (m, 2 H), 1.40–1.47 (m, 2 H), 1.33 (s, 3 H), 1.14–1.22 (m, 2 H), 0.86 (s, 9 H), 0.02 (s, 6 H). 13C NMR (100 MHz, CDCl3): δ = 210.3, 180.4, 143.1, 133.6, 127.7, 126.4, 122.5, 107.9, 62.7, 48.2, 42.3, 23.2, 37.6, 32.1, 26.0, 25.8, 23.8, 20.1, 18.7, 18.2, 5.4. IR (neat): 2951, 2928, 2856, 1714, 1613, 1493, 1253, 1100, 835 cm–1. MS: m/z calcd for C24H39NO3Si [M + H]+: 418.28; found. 418.2.