Synthesis 2017; 49(17): 3931-3936
DOI: 10.1055/s-0036-1589010
special topic
© Georg Thieme Verlag Stuttgart · New York

Cobalt-Catalyzed Monoselective ortho-C–H Ethylation of Carboxamides with Triethylaluminum

Kun Xu  *
College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, Henan, 473061, P. R. of China   Email: xukun@nynu.edu.cn   Email: shengzhang@nynu.edu.cn
,
Zhoumei Tan
College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, Henan, 473061, P. R. of China   Email: xukun@nynu.edu.cn   Email: shengzhang@nynu.edu.cn
,
Haonan Zhang
College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, Henan, 473061, P. R. of China   Email: xukun@nynu.edu.cn   Email: shengzhang@nynu.edu.cn
,
Sheng Zhang*
College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, Henan, 473061, P. R. of China   Email: xukun@nynu.edu.cn   Email: shengzhang@nynu.edu.cn
› Author Affiliations
We are grateful to the Natural Science Foundation of China (21602119, U1504208), and for financial support from He’nan Provincial Department of Science and Technology (152300410117).
Further Information

Publication History

Received: 15 February 2017

Accepted after revision: 30 March 2017

Publication Date:
29 May 2017 (online)


Published as part of the Special Topic Cobalt in Organic Synthesis

Abstract

A 1,10-phenanthroline ligated cobalt catalyst is reported for the ortho-C–H ethylation of aromatic, heteroaromatic, and alkenyl carboxamides with inexpensive triethylaluminum. This reaction represented the first example of cobalt-catalyzed monoselective direct ortho-C–H ethylation reaction with aluminum reagent as an alkyl donor.

Supporting Information

 
  • References


    • For selected recent reviews, see:
    • 1a Su B. Cao ZC. Shi ZJ. Acc. Chem. Res. 2015; 48: 886
    • 1b Liu W. Groves JT. Acc. Chem. Res. 2015; 48: 1727
    • 1c Tasker SZ. Standley EA. Jamison TF. Nature 2014; 509: 299
    • 1d Jia F. Li Z. Org. Chem. Front. 2014; 1: 194
    • 1e Mousseau JJ. Charette AB. Acc. Chem. Res. 2013; 46: 412
    • 1f Yamaguchi J. Muto K. Itami K. Eur. J. Org. Chem. 2013; 19

      For recent reviews, see:
    • 2a Moselage M. Li J. Ackermann L. ACS Catal. 2016; 6: 498
    • 2b Wei D. Zhu X. Niu JL. Song MP. ChemCatChem 2016; 8: 1242
    • 2c Gao K. Yoshikai N. Acc. Chem. Res. 2014; 47: 1208

      For selected examples on cobalt-catalyzed C–H functionalization from the last two years, see:
    • 3a Gensch T. Klauck FJ. R. Glorius F. Angew. Chem. Int. Ed. 2016; 55: 11287
    • 3b Liang Y. Jiao N. Angew. Chem. Int. Ed. 2016; 55: 4035
    • 3c Nguyen TT. Grigorjeva L. Daugulis O. ACS Catal. 2016; 6: 551
    • 3d Mei R. Loup J. Ackermann L. ACS Catal. 2016; 6: 793
    • 3e Zhang Z.-Z. Liu B. Xu J.-W. Yan S.-Y. Shi B.-F. Org. Lett. 2016; 18: 1776
    • 3f Wu X. Yang K. Zhao Y. Sun H. Li G. Ge H. Nat. Commun. 2015; 6: 6462
    • 3g Sun B. Yoshino T. Kanai M. Matsunaga S. Angew. Chem. Int. Ed. 2015; 54: 12968
    • 3h Xu K. Wang ZQ. Zhang JJ. Yu LT. Tan J. Org. Lett. 2015; 17: 4476
    • 3i Hummel JR. Ellman JA. J. Am. Chem. Soc. 2015; 137: 490
    • 3j Li J. Ackermann L. Angew. Chem. Int. Ed. 2015; 54: 3635
    • 3k Zhang LB. Hao XQ. Zhang SK. Liu ZJ. Zheng XX. Gong JF. Niu JL. Song MP. Angew. Chem. Int. Ed. 2015; 54: 272
    • 3l Zhang JT. Chen H. Li C. Liu ZX. Wang C. Zhang YH. J. Am. Chem. Soc. 2015; 137: 12990
  • 4 Chen X. Li J.-J. Hao X.-S. Goodhue CE. Yu J.-Q. J. Am. Chem. Soc. 2006; 128: 78

    • For selected examples, see:
    • 5a Chen Q. Ilies L. Nakamura E. J. Am. Chem. Soc. 2011; 133: 428
    • 5b Chen Q. Ilies L. Yoshikai N. Nakamura E. Org. Lett. 2011; 13: 3232
    • 5c Li B. Wu ZH. Gu YF. Sun CL. Wang BQ. Shi ZJ. Angew. Chem. Int. Ed. 2011; 50: 1109
    • 6a Wang D.-H. Wasa M. Giri R. Yu J.-Q. J. Am. Chem. Soc. 2008; 130: 7190
    • 6b Thuy-Boun PS. Villa G. Dang D. Richardson P. Su S. Yu J.-Q. J. Am. Chem. Soc. 2013; 135: 17508
    • 6c Neufeldt SR. Seigerman CK. Sanford MS. Org. Lett. 2013; 15: 2302

      For selected examples, see:
    • 7a Maity S. Kancherla R. Dhawa U. Hoque E. Pimparkar S. Maiti D. ACS Catal. 2016; 6: 5493
    • 7b Wasa M. Engle KM. Yu J.-Q. J. Am. Chem. Soc. 2010; 132: 3680
    • 7c Lewis JC. Bergman RG. Ellman JA. J. Am. Chem. Soc. 2007; 129: 5332

      For selected recent examples, see:
    • 8a Wiest JM. Pöthig A. Bath T. Org. Lett. 2016; 18: 852
    • 8b Zhang S.-Y. li Q. He G. Nack WA. Chen G. J. Am. Chem. Soc. 2015; 137: 531
    • 8c Fruchey ER. Monks BM. Cook SP. J. Am. Chem. Soc. 2014; 136: 13130
    • 8d Gao K. Yoshikai N. J. Am. Chem. Soc. 2013; 135: 9279
    • 8e Hofmann N. Ackermann L. J. Am. Chem. Soc. 2013; 135: 5877
    • 8f Nadres ET. Santos GI. F. Shabashov D. Daugulis O. J. Org. Chem. 2013; 78: 9689
    • 8g Aihara Y. Chatani N. J. Am. Chem. Soc. 2013; 135: 5308
    • 9a Shang R. Ilies L. Nakamura E. J. Am. Chem. Soc. 2016; 138: 10132
    • 9b Shang R. Ilies L. Nakamura E. J. Am. Chem. Soc. 2015; 137: 7660

      For selected recent examples on C–H methylation, see:
    • 10a Li Q. Li Y. Hu W. Hu R. Li GG. Lu HJ. Chem. Eur. J. 2016; 22: 12286
    • 10b Uemura T. Yamaguchi M. Chatani N. Angew. Chem. Int. Ed. 2016; 55: 3162
    • 10c Kubo T. Chatani N. Org. Lett. 2016; 18: 1698
    • 10d Graczyk K. Haven T. Ackermann L. Chem. Eur. J. 2015; 21: 8812
    • 10e Aihara Y. Wuelbern J. Chatani N. Bull. Chem. Soc. Jpn. 2015; 88: 438
    • 10f Ilies L. Matsubara T. Ichikawa S. Asako S. Nakamura E. J. Am. Chem. Soc. 2014; 136: 13126
    • 10g Rosen BR. Simke LR. Thuy-Boun PS. Dixon DD. Yu JQ. Baran PS. Angew. Chem. Int. Ed. 2013; 52: 7317
    • 10h Zhang S.-Y. Li Q. He G. Nack WA. Chen G. J. Am. Chem. Soc. 2013; 135: 12135
  • 11 Wang HQ. Zhang S. Wang ZQ. He MH. Xu K. Org. Lett. 2016; 18: 5628