Synthesis 2017; 49(15): 3377-3393
DOI: 10.1055/s-0036-1590818
short review
© Georg Thieme Verlag Stuttgart · New York

Recent Developments of Manganese Complexes for Catalytic Hydrogenation and Dehydrogenation Reactions

Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia-741246, West Bengal, India   Email: bm@iiserkol.ac.in
,
Milan K. Barman
Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia-741246, West Bengal, India   Email: bm@iiserkol.ac.in
› Author Affiliations
The author thanks IISER Kolkata (Start-up grant) and DST SERB (ECR/2016/001654) for financial support. M.K.B. thanks SERB for an NPDF fellowship.
Further Information

Publication History

Received: 30 April 2017

Accepted after revision: 06 June 2017

Publication Date:
13 July 2017 (online)


Dedicated to Professor Dr. Herbert Mayr on the occasion­ of his 70th birthday

Abstract

Being the third most abundant transition metal in the Earth’s crust (after iron and titanium) and less toxic, reactions catalyzed by manganese are becoming very important. A large number of manganese complexes have been synthesized using bidentate and tridentate ligands. Such manganese complexes display excellent catalytic activities for various important organic transformations, such as hydrogenation, dehydrogenation, dehydrogenative coupling, transfer hydrogenation reactions, etc. In this short review, recent developments of such manganese-catalyzed reactions are presented.

1 Introduction

2 Well-Defined Manganese-Complex-Catalyzed Hydrogenation Reactions

2.1 Hydrogenation of Nitriles

2.2 Hydrogenation of Aldehydes and Ketones

2.3 Hydrogenation of Esters

2.4 Hydrogenation of Amides

2.5 Hydrogenation of Carbon Dioxide

3 Manganese-Catalyzed Dehydrogenation Reactions

3.1 Selective Dehydrogenation of Methanol

3.2 Dehydrogenative N-Formylation of Amines by Methanol

3.3 Dehydrogenative Coupling Reactions of Alcohols

3.4 Imine Synthesis via Dehydrogenative Coupling of Alcohols and Amines

3.5 Synthesis of N-Heterocycles via Dehydrogenative Coupling

4 Manganese-Catalyzed Dehydrogenation–Hydrogenation Cascades

4.1 N-Alkylation of Amines with Primary Alcohols

4.2 α-Alkylation of Ketones with Primary Alcohols

4.3 Transfer Hydrogenation of Ketones

5 Conclusion

 
  • References

    • 1a Benito-Garagorri D. Kirchner K. Acc. Chem. Res. 2008; 41: 201
    • 1b Choi J. MacArthur AH. R. Brookhart M. Goldman AS. Chem. Rev. 2011; 111: 1761
    • 1c Selander N. Szabo KJ. Chem. Rev. 2011; 111: 2048
    • 1d Gunanathan C. Milstein D. Chem. Rev. 2014; 114: 12024
    • 1e Chirik PJ. Acc. Chem. Res. 2015; 48: 1687
    • 1f Zell T. Milstein D. Acc. Chem. Res. 2015; 48: 1979
    • 2a Bullock RM. Catalysis without Precious Metals. Wiley-VCH; Weinheim: 2010
    • 2b Bullock RM. Science 2013; 342: 1054
    • 2c Carney JR. Dillon BR. Thomas SP. Eur. J. Org. Chem. 2016; 3912
  • 3 Werkmeister S. Neumann J. Junge K. Beller M. Chem. Eur. J. 2015; 21: 12226
    • 4a Wieghardt K. Angew. Chem. Int. Ed. 1989; 28: 1153
    • 4b Christianson DW. Prog. Biophys. Mol. Biol. 1997; 67: 217
    • 5a Atack TC. Cook SP. J. Am. Chem. Soc. 2016; 138: 6139
    • 5b Elangovan S. Garbe M. Jiao H. Spannenberg A. Junge K. Beller M. Angew. Chem. Int. Ed. 2016; 55: 15364
    • 5c Elangovan S. Neumann J. Sortais JB. Junge K. Darcel C. Beller M. Nat. Commun. 2016; 7: 12641
    • 5d Elangovan S. Topf C. Fischer S. Jiao H. Spannenberg A. Baumann W. Ludwig R. Junge K. Beller M. J. Am. Chem. Soc. 2016; 138: 8809
    • 5e Espinosa-Jalapa NA. Nerush A. Shimon LJ. W. Leitus G. Avram L. Ben-David Y. Milstein D. Chem. Eur. J. 2017; 23: 5934
    • 5f Kallmeier F. Irrgang T. Dietel T. Kempe R. Angew. Chem. Int. Ed. 2016; 55: 11806
    • 5g Mastalir M. Glatz M. Gorgas N. Stöger B. Pittenauer E. Allmaier G. Veiros LF. Kirchner K. Chem. Eur. J. 2016; 22: 12316
    • 5h Mukherjee A. Nerush A. Leitus G. Shimon LJ. W. Ben-David Y. Espinosa Jalapa NA. Milstein D. J. Am. Chem. Soc. 2016; 138: 4298
    • 5i Nerush A. Vogt M. Gellrich U. Leitus G. Ben-David Y. Milstein D. J. Am. Chem. Soc. 2016; 138: 6985
    • 5j Peña-López M. Piehl P. Elangovan S. Neumann H. Beller M. Angew. Chem. Int. Ed. 2016; 55: 14967
    • 5k Valyaev DA. Wei D. Elangovan S. Cavailles M. Dorcet V. Sortais J.-B. Darcel C. Lugan N. Organometallics 2016; 35: 4090
    • 5l Zhang G. Zeng H. Wu J. Yin Z. Zheng S. Fettinger JC. Angew. Chem. Int. Ed. 2016; 55: 14369
    • 5m Andérez-Fernández M. Vogt LK. Fischer S. Zhou W. Jiao H. Garbe M. Elangovan S. Junge K. Junge H. Ludwig R. Beller M. Angew. Chem. Int. Ed. 2017; 56: 559
    • 5n Bruneau-Voisine A. Wang D. Dorcet V. Roisnel T. Darcel C. Sortais J.-B. J. Catal. 2017; 347: 57
    • 5o Bruneau-Voisine A. Wang D. Roisnel T. Darcel C. Sortais J.-B. Cat. Commun. 2017; 92: 1
    • 5p Chakraborty S. Gellrich U. Diskin-Posner Y. Leitus G. Avram L. Milstein D. Angew. Chem. Int. Ed. 2017; 56: 4229
    • 5q Chen X. Ge H. Yang X. Catal. Sci. Technol. 2017; 7: 348
    • 5r Deibl N. Kempe R. Angew. Chem. Int. Ed. 2017; 56: 1663
    • 5s Neumann J. Elangovan S. Spannenberg A. Junge K. Beller M. Chem. Eur. J. 2017; 23: 5410
    • 5t Nguyen DH. Trivelli X. Capet F. Paul J.-F. Dumeignil F. Gauvin RM. ACS Catal. 2017; 7: 2022
    • 5u Papa V. Cabrero-Antonino JR. Alberico E. Spanneberg A. Junge K. Junge H. Beller M. Chem. Sci. 2017; 8: 3576
    • 5v Perez M. Elangovan S. Spannenberg A. Junge K. Beller M. ChemSusChem 2017; 10: 83
    • 5w Widegren MB. Harkness GJ. Slawin AM. Z. Cordes DB. Clarke ML. Angew. Chem. Int. Ed. 2017; 56: 5825
    • 5x Zheng J. Elangovan S. Valyaev DA. Brousses R. César V. Sortais J.-B. Darcel C. Lugan N. Lavigne G. Adv. Synth. Catal. 2014; 356: 1093
    • 5y Kallmeier F. Dudziec B. Irrgang T. Kempe R. Angew. Chem. Int. Ed. 2017; 56: 7261
    • 5z van Putten R. Uslamin EA. Garbe M. Liu C. Gonzalez-de-Castro A. Lutz M. Junge K. Hensen EJ. M. Beller M. Lefort L. Pidko EA. Angew. Chem. Int. Ed. 2017; 56: 7531
    • 5aa Zirakzadeh A. de Aguiar SR. M. M. Stöger B. Widhalm M. Kirchner K. ChemCatChem 2017; 9: 1744
    • 5ab Vasilenko V., Blasius C. K., Wadepohl H., Gade L. Angew. Chem. Int. Ed. 2017, 56, 8393.
    • 5ac Bertini F., Glatz M., Gorgas N., Stoger B., Peruzzini M., Veiros L. F., Kirchner K., Gonsalvi L. Chem. Sci. 2017, 8, 5024.
    • 5ad Mastalir M. Glatz M. Pittenauer E. Allmaier G. Kirchner K. J. Am. Chem. Soc. 2016; 138: 15543
    • 5ae Dubey A. Nencini L. Fayzullin RR. Nervi C. Khusnutdinova JR. ACS Catal. 2017; 7: 3864
    • 5af Mukhopadhyay TK. Flores M. Groy TL. Trovitch RJ. J. Am. Chem. Soc. 2014; 136: 882
    • 6a Radosevich AT. Melnick JG. Stoian SA. Bacciu D. Chen C.-H. Foxman BM. Ozerov OV. Nocera DG. Inorg. Chem. 2009; 48: 9214
    • 6b Bacciu D. Chen C.-H. Surawatanawong P. Foxman BM. Ozerov OV. Inorg. Chem. 2010; 49: 5328
    • 6c Sampson MD. Nguyen AD. Grice KA. Moore CE. Rheingold AL. Kubiak CP. J. Am. Chem. Soc. 2014; 136: 5460
    • 6d Umehara K. Kuwata S. Ikariya T. Inorg. Chim. Acta 2014; 413: 136
    • 7a Yoon TP. Jacobsen EN. Science 2003; 299: 1691
    • 7b Liu W. Groves JT. Angew. Chem. Int. Ed. 2013; 52: 6024
    • 7c He R. Huang Z.-T. Zheng Q.-Y. Wang C. Angew. Chem. Int. Ed. 2014; 53: 4950
    • 7d Paradine SM. Griffin JR. Zhao J. Petronico AL. Miller SM. White MC. Nat. Chem. 2015; 7: 987
    • 7e Ren R. Zhao H. Huan L. Zhu C. Angew. Chem. Int. Ed. 2015; 54: 12692
    • 7f Valyaev DA. Lavigne G. Lugan N. Coord. Chem. Rev. 2016; 308: 191
    • 8a Che C.-M. Lo VK.-Y. Zhou C.-Y. Huang J.-S. Chem. Soc. Rev. 2011; 40: 1950
    • 8b Lu H. Zhang XP. Chem. Soc. Rev. 2011; 40: 1899
  • 9 Sorokin AB. Chem. Rev. 2013; 113: 8152
    • 10a Katsuki T. Coord. Chem. Rev. 1995; 140: 189
    • 10b McGarrigle EM. Gilheany DG. Chem. Rev. 2005; 105: 1563
    • 11a Talsi EP. Bryliakov KP. Coord. Chem. Rev. 2012; 256: 1418
    • 11b Saisaha P. de Boer JW. Browne WR. Chem. Soc. Rev. 2013; 42: 2059
    • 12a Ghosh C. Mukhopadhyay TK. Flores M. Groy TL. Trovitch RJ. Inorg. Chem. 2015; 54: 10398
    • 12b Mastalir M. Glatz M. Stöger B. Weil M. Pittenauer E. Allmaier G. Kirchner K. Inorg. Chim. Acta 2016; 455: 707
    • 13a Gossage RA. van de Kuil LA. van Koten G. Acc. Chem. Res. 1998; 31: 423
    • 13b Albrecht M. van Koten G. Angew. Chem. Int. Ed. 2001; 40: 3750
    • 13c van der Boom ME. Milstein D. Chem. Rev. 2003; 103: 1759
    • 13d Nishiyama H. Chem. Soc. Rev. 2007; 36: 1133
    • 13e Younus HA. Ahmad N. Su W. Verpoort F. Coord. Chem. Rev. 2014; 276: 112
    • 13f Asay M. Morales-Morales D. Dalton Trans. 2015; 44: 17432
    • 13g Murugesan S. Kirchner K. Dalton Trans. 2016; 45: 416
    • 14a Rylander PN. Catalytic Hydrogenation in Organic Synthesis . Academic Press; New York: 1979
    • 14b Modern Reduction Methods . Andersson PG. Munslow IJ. Wiley; New York: 2008
  • 15 Pritchard J. Filonenko GA. van Putten R. Hensen EJ. M. Pidko EA. Chem. Soc. Rev. 2015; 44: 3808
  • 16 Noyori R. Angew. Chem. Int. Ed. 2002; 41: 2008
  • 17 The Handbook of Homogeneous Hydrogenation . de Vries JG. Elsevier CJ. Wiley-VCH; Weinheim: 2007
    • 18a Casey CP. Guan H. J. Am. Chem. Soc. 2007; 129: 5816
    • 18b Alberico E. Sponholz P. Cordes C. Nielsen M. Drexler H.-J. Baumann W. Junge H. Beller M. Angew. Chem. Int. Ed. 2013; 52: 14162
    • 18c Bielinski EA. Lagaditis PO. Zhang Y. Mercado BQ. Wurtele C. Bernskoetter WH. Hazari N. Schneider S. J. Am. Chem. Soc. 2014; 136: 10234
    • 18d Chakraborty S. Brennessel WW. Jones WD. J. Am. Chem. Soc. 2014; 136: 8564
    • 18e Chakraborty S. Dai H. Bhattacharya P. Fairweather NT. Gibson MS. Krause JA. Guan H. J. Am. Chem. Soc. 2014; 136: 7869
    • 18f Lagaditis PO. Sues PE. Sonnenberg JF. Wan KY. Lough AJ. Morris RH. J. Am. Chem. Soc. 2014; 136: 1367
    • 18g Werkmeister S. Junge K. Wendt B. Alberico E. Jiao H. Baumann W. Junge H. Gallou F. Beller M. Angew. Chem. Int. Ed. 2014; 53: 8722
    • 18h Zell T. Ben-David Y. Milstein D. Angew. Chem. Int. Ed. 2014; 53: 4685
    • 18i Morris RH. Acc. Chem. Res. 2015; 48: 1494
    • 18j Chakraborty S. Leitus G. Milstein D. Chem. Commun. 2016; 52: 1812
    • 18k Gorgas N. Stoeger B. Veiros LF. Kirchner K. ACS Catal. 2016; 6: 2664
    • 18l Xu R. Chakraborty S. Bellows SM. Yuan H. Cundari TR. Jones WD. ACS Catal. 2016; 6: 2127
    • 19a Zhang G. Scott BL. Hanson SK. Angew. Chem. Int. Ed. 2012; 51: 12102
    • 19b Semproni SP. Milsmann C. Chirik PJ. J. Am. Chem. Soc. 2014; 136: 9211
    • 19c Hou C. Jiang J. Li Y. Zhang Z. Zhao C. Ke Z. Dalton Trans. 2015; 44: 16573
    • 19d Jing Y. Chen X. Yang X. Organometallics 2015; 34: 5716
    • 19e Mukherjee A. Srimani D. Chakraborty S. Ben-David Y. Milstein D. J. Am. Chem. Soc. 2015; 137: 8888
    • 19f Roesler S. Obenauf J. Kempe R. J. Am. Chem. Soc. 2015; 137: 7998
    • 19g Srimani D. Mukherjee A. Goldberg AF. G. Leitus G. Diskin-Posner Y. Shimon LJ. W. Ben-David Y. Milstein D. Angew. Chem. Int. Ed. 2015; 54: 12357
    • 19h Xu R. Chakraborty S. Yuan H. Jones WD. ACS Catal. 2015; 5: 6350
    • 19i Murugesan S. Stoeger B. Pittenauer E. Allmaier G. Veiros LF. Kirchner K. Angew. Chem. Int. Ed. 2016; 55: 3045
  • 20 Vasudevan KV. Scott BL. Hanson SK. Eur. J. Inorg. Chem. 2012; 4898
  • 21 Watari R. Kayaki Y. Hirano S.-i. Matsumoto N. Ikariya T. Adv. Synth. Catal. 2015; 357: 1369
  • 22 Jochmann P. Stephan DW. Angew. Chem. Int. Ed. 2013; 52: 9831
    • 23a Andersson PG. Munslow IJ. Modern Reduction Methods . Wiley-VCH; Weinheim: 1972
    • 23b Trost BM. Fleming I. Comprehensive Organic Synthesis . Vol. 8. Pergamon; Oxford: 1991
  • 24 Nigst TA. Mayr H. Eur. J. Org. Chem. 2013; 2155
    • 25a Clarke ML. Catal. Sci. Technol. 2012; 2: 2418
    • 25b Dub PA. Ikariya T. ACS Catal. 2012; 2: 1718
    • 25c Werkmeister S. Junge K. Beller M. Org. Process Res. Dev. 2014; 18: 289

      Ru catalysts:
    • 26a Fogler E. Balaraman E. Ben-David Y. Leitus G. Shimon LJ. W. Milstein D. Organometallics 2011; 30: 3826
    • 26b Kuriyama W. Matsumoto T. Ogata O. Ino Y. Aoki K. Tanaka S. Ishida K. Kobayashi T. Sayo N. Saito T. Org. Process Res. Dev. 2012; 16: 166
    • 26c O, W. W. N; Morris RH. ACS Catal. 2013; 3: 32
    • 26d Spasyuk D. Smith S. Gusev DG. Angew. Chem. Int. Ed. 2013; 52: 2538
    • 26e Kim D. Le L. Drance MJ. Jensen KH. Bogdanovski K. Cervarich TN. Barnard MG. Pudalov NJ. Knapp SM. M. Chianese AR. Organometallics 2016; 35: 982
  • 27 Chelucci G. Baldino S. Baratta W. Acc. Chem. Res. 2015; 48: 363
    • 28a Junge K. Wendt B. Jiao H. Beller M. ChemCatChem 2014; 6: 2810
    • 28b Zell T. Milstein D. Acc. Chem. Res. 2015; 48: 1979
  • 29 Elangovan S. Wendt B. Topf C. Bachmann S. Scalone M. Spannenberg A. Jiao H. Baumann W. Junge K. Beller M. Adv. Synth. Catal. 2016; 358: 820
  • 30 Korstanje TJ. van der Vlugt JI. Elsevier CJ. de Bruin B. Science 2015; 350: 298
    • 31a Beamson G. Papworth AJ. Philipps C. Smith AM. Whyman R. Adv. Synth. Cat. 2010; 352: 869
    • 31b Coetzee J. Manyar HG. Hardacre C. Cole-Hamilton DJ. ChemCatChem 2013; 5: 2843
    • 31c Stein M. Breit B. Angew. Chem. Int. Ed. 2013; 52: 2231
    • 32a Balaraman E. Gnanaprakasam B. Shimon LJ. W. Milstein D. J. Am. Chem. Soc. 2010; 132: 16756
    • 32b Ito M. Ootsuka T. Watari R. Shiibashi A. Himizu A. Ikariya T. J. Am. Chem. Soc. 2011; 133: 4240
    • 32c John JM. Bergens SH. Angew. Chem. Int. Ed. 2011; 50: 10377
    • 32d Miura T. Held IE. Oishi S. Naruto M. Saito S. Tetrahedron Lett. 2013; 54: 2674
    • 32e Kita Y. Higuchi T. Mashima K. Chem. Commun. 2014; 50: 11211
    • 32f vom Stein T. Meuresch M. Limper D. Schmitz M. Hölscher M. Coetzee J. Cole-Hamilton DJ. Klankermayer J. Leitner W. J. Am. Chem. Soc. 2014; 136: 13217
    • 32g Yuan M.-L. Xie J.-H. Zhou Q.-L. ChemCatChem 2016; 8: 3036
    • 32h Shi L. Tan X. Long J. Xiong X. Yang S. Xue P. Lv H. Zhang X. Chem. Eur. J. 2017; 23: 546
    • 33a Enthaler S. von Langermann J. Schmidt T. Energy Environ. Sci. 2010; 3: 1207
    • 33b Loges B. Boddien A. Gaertner F. Junge H. Beller M. Top. Catal. 2010; 53: 902
    • 33c Klankermayer J. Wesselbaum S. Beydoun K. Leitner W. Angew. Chem. Int. Ed. 2016; 55: 7296
    • 33d Mellmann D. Sponholz P. Junge H. Beller M. Chem. Soc. Rev. 2016; 45: 3954
    • 34a Tanaka R. Yamashita M. Nozaki K. J. Am. Chem. Soc. 2009; 131: 14168
    • 34b Schmeier TJ. Dobereiner GE. Crabtree RH. Hazari N. J. Am. Chem. Soc. 2011; 133: 9274
    • 34c Boddien A. Federsel C. Sponholz P. Mellmann D. Jackstell R. Junge H. Laurenczy G. Beller M. Energy Environ. Sci. 2012; 5: 8907
    • 34d Hull JF. Himeda Y. Wang W.-H. Hashiguchi B. Periana R. Szalda DJ. Muckerman JT. Fujita E. Nat. Chem. 2012; 4: 383
    • 34e Filonenko GA. Conley MP. Coperet C. Lutz M. Hensen EJ. M. Pidko EA. ACS Catal. 2013; 3: 2522
    • 34f Huff CA. Sanford MS. ACS Catal. 2013; 3: 2412
    • 34g Muller K. Sun Y. Thiel WR. ChemCatChem 2013; 5: 1340
    • 34h Filonenko GA. van Putten R. Schulpen EN. Hensen EJ. M. Pidko EA. ChemCatChem 2014; 6: 1526
    • 34i Hsu S.-F. Rommel S. Eversfield P. Muller K. Klemm E. Thiel WR. Plietker B. Angew. Chem. Int. Ed. 2014; 53: 7074
    • 35a Sa S. Silva H. Brandao L. Sousa JM. Mendes A. Appl. Catal., B 2010; 99: 43
    • 35b Moran J. Preetz A. Mesch RA. Krische MJ. Nat. Chem. 2011; 3: 287
    • 35c Chan LK. M. Poole DL. Shen D. Healy MP. Donohoe TJ. Angew. Chem. Int. Ed. 2014; 53: 761
    • 35d Alberico E. Nielsen M. Chem. Commun. 2015; 51: 6714
    • 35e Sam B. Breit B. Krische MJ. Angew. Chem. Int. Ed. 2015; 54: 3267
    • 35f Shen D. Poole DL. Shotton CC. Kornahrens AF. Healy MP. Donohoe TJ. Angew. Chem. Int. Ed. 2015; 54: 1642
    • 35g Nguyen KD. Herkommer D. Krische MJ. J. Am. Chem. Soc. 2016; 138: 14210
    • 36a Srimani D. Ben-David Y. Milstein D. Angew. Chem. Int. Ed. 2013; 52: 4012
    • 36b Hasanayn F. Harb H. Inorg. Chem. 2014; 53: 8334
    • 36c Ruch S. Irrgang T. Kempe R. Chem. Eur. J. 2014; 20: 13279
    • 36d Saha B. Wahidur Rahaman SM. Daw P. Sengupta G. Bera JK. Chem. Eur. J. 2014; 20: 6542
    • 36e Bain J. Cho P. Voutchkova-Kostal A. Green Chem. 2015; 17: 2271
    • 37a Nielsen M. Alberico E. Baumann W. Drexler H.-J. Junge H. Gladiali S. Beller M. Nature 2013; 495: 85
    • 37b Rodríguez-Lugo RE. Trincado M. Vogt M. Tewes F. Santiso-Quinones G. Grützmacher H. Nat. Chem. 2013; 5: 342
    • 37c Bielinski EA. Förster M. Zhang Y. Bernskoetter WH. Hazari N. Holthausen MC. ACS Catal. 2015; 5: 2404
    • 37d Campos J. Sharninghausen LS. Manas MG. Crabtree RH. Inorg. Chem. 2015; 54: 5079
    • 37e Fujita K.-i. Kawahara R. Aikawa T. Yamaguchi R. Angew. Chem. Int. Ed. 2015; 54: 9057
    • 37f Wakizaka M. Matsumoto T. Tanaka R. Chang H.-C. Nat. Commun. 2016; 7: 12333
  • 38 Gnanaprakasam B. Zhang J. Milstein D. Angew. Chem. Int. Ed. 2010; 49: 1468
  • 39 Montag M. Zhang J. Milstein D. J. Am. Chem. Soc. 2012; 134: 10325
    • 40a Schley ND. Dobereiner GE. Crabtree RH. Organometallics 2011; 30: 4174
    • 40b Iida K. Miura T. Ando J. Saito S. Org. Lett. 2013; 15: 1436
    • 40c Michlik S. Kempe R. Angew. Chem. Int. Ed. 2013; 52: 6326
    • 40d Srimani D. Ben-David Y. Milstein D. Chem. Commun. 2013; 49: 6632
    • 40e Zhang M. Fang X. Neumann H. Beller M. J. Am. Chem. Soc. 2013; 135: 11384
    • 40f Chen M. Zhang M. Xiong B. Tan Z. Lv W. Jiang H. Org. Lett. 2014; 16: 6028
    • 40g Forberg D. Obenauf J. Friedrich M. Huhne S.-M. Mader W. Motz G. Kempe R. Catal. Sci. Technol. 2014; 4: 4188
    • 40h Forberg D. Schwob T. Zaheer M. Friedrich M. Miyajima N. Kempe R. Nat. Commun. 2016; 7: 13201
    • 40i Pan B. Liu B. Yue E. Liu Q. Yang X. Wang Z. Sun W.-H. ACS Catal. 2016; 6: 1247
    • 40j Yan T. Barta K. ChemSusChem 2016; 9: 2321
    • 40k Emayavaramban B. Sen M. Sundararaju B. Org. Lett. 2017; 19: 6
    • 40l Hille T. Irrgang T. Kempe R. Angew. Chem. Int. Ed. 2017; 56: 371
    • 41a Perego C. Ingallina P. Green Chem. 2004; 6: 274
    • 41b Carey JS. Laffan D. Thomson C. Williams MT. Org. Biomol. Chem. 2006; 4: 2337
    • 41c Roughley SD. Jordan AM. J. Med. Chem. 2011; 54: 3451
    • 41d Schneider N. Lowe DM. Sayle RA. Tarselli MA. Landrum GA. J. Med. Chem. 2016; 59: 4385
  • 42 Magano J. Dunetz JR. Chem. Rev. 2011; 111: 2177
  • 43 Sperotto E. van Klink GP. M. van Koten G. de Vries JG. Dalton Trans. 2010; 39: 10338
  • 44 Huang L. Arndt M. Gooßen K. Heydt H. Gooßen LJ. Chem. Rev. 2015; 115: 2596
    • 45a Hamid MH. S. A. Allen CL. Lamb GW. Maxwell AC. Maytum HC. Watson AJ. A. Williams JM. J. J. Am. Chem. Soc. 2009; 131: 1766
    • 45b Cui X. Deng Y. Shi F. ACS Catal. 2013; 3: 808
    • 45c Enyong AB. Moasser B. J. Org. Chem. 2014; 79: 7553
    • 45d Marichev KO. Takacs JM. ACS Catal. 2016; 6: 2205
    • 46a Fujita K. Fujii T. Yamaguchi R. Org. Lett. 2004; 6: 3525
    • 46b Yuan K. Jiang F. Sahli Z. Achard M. Roisnel T. Bruneau C. Angew. Chem. Int. Ed. 2012; 51: 8876
    • 46c Michlik S. Kempe R. Angew. Chem. Int. Ed. 2013; 52: 6326
    • 46d Wetzel A. Woeckel S. Schelwies M. Brinks MK. Rominger F. Hofmann P. Limbach M. Org. Lett. 2013; 15: 266
    • 47a Zhao Y. Foo SW. Saito S. Angew. Chem. Int. Ed. 2011; 50: 3006
    • 47b Bala M. Verma PK. Sharma U. Kumar N. Singh B. Green Chem. 2013; 15: 1687
    • 47c Quintard A. Constantieux T. Rodriguez J. Angew. Chem. Int. Ed. 2013; 52: 12883
    • 47d Yan T. Feringa BL. Barta K. Nat. Commun. 2014; 5: 5602
    • 47e Elangovan S. Sortais J.-B. Beller M. Darcel C. Angew. Chem. Int. Ed. 2015; 54: 14483
    • 47f Pan H.-J. Ng TW. Zhao Y. Chem. Commun. 2015; 51: 11907
    • 47g Rawlings AJ. Diorazio LJ. Wills M. Org. Lett. 2015; 17: 1086
    • 47h Emayavaramban B. Roy M. Sundararaju B. Chem. Eur. J. 2016; 22: 3952
    • 47i Yan T. Feringa BL. Barta K. ACS Catal. 2016; 6: 381
    • 48a Rösler S. Ertl M. Irrgang T. Kempe R. Angew. Chem. Int. Ed. 2015; 54: 15046
    • 48b Zhang G. Yin Z. Zheng S. Org. Lett. 2016; 18: 300
    • 49a Hamid MH. S. A. Slatford PA. Williams JM. J. Adv. Synth. Catal. 2007; 349: 1555
    • 49b Dobereiner GE. Crabtree RH. Chem. Rev. 2010; 110: 681
    • 49c Guillena G. Ramón DJ. Yus M. Chem. Rev. 2010; 110: 1611
    • 49d Gunanathan C. Milstein D. Science 2013; 341: 249
    • 49e Pan S. Shibata T. ACS Catal. 2013; 3: 704
    • 49f Obora Y. ACS Catal. 2014; 4: 3972
    • 50a Fujita K.-I.. Asai C. Yamaguchi T. Hanasaka F. Yamaguchi R. Org. Lett. 2005; 7: 4017
    • 50b Martínez R. Ramón DJ. Yus M. Tetrahedron 2006; 62: 8988
    • 50c Li F. Ma J. Wang N. J. Org. Chem. 2014; 79: 10447
    • 50d Wang D. Zhao K. Ma P. Xu C. Ding Y. Tetrahedron Lett. 2014; 55: 7233
    • 50e Huang F. Liu Z. Yu Z. Angew. Chem. Int. Ed. 2016; 55: 862