Synthesis 2017; 49(21): 4719-4730
DOI: 10.1055/s-0036-1590913
review
© Georg Thieme Verlag Stuttgart · New York

Recent Advances in Transition-Metal-Free Aryl C–B Bond Formation

Kai Chen
a   School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, P. R. of China   Email: mengge@mail.xjtu.edu.cn
,
Linghua Wang
b   Frontier Institute of Science and Technology and Frontier Institute of Chemistry, Xi’an Jiaotong University, Xi’an 710054, P. R. of China   Email: lipengfei@mail.xjtu.edu.cn
,
Ge Meng*
a   School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, P. R. of China   Email: mengge@mail.xjtu.edu.cn
,
b   Frontier Institute of Science and Technology and Frontier Institute of Chemistry, Xi’an Jiaotong University, Xi’an 710054, P. R. of China   Email: lipengfei@mail.xjtu.edu.cn
› Author Affiliations
Financial support was provided by the NSFC (Nos. 21672168 and 21472146), the Ministry of Science and Technology of PRC (No. 2014CB548200) and the China Postdoctoral Science Foundation (No. 2017M613103).
Further Information

Publication History

Received: 23 May 2017

Accepted after revision: 19 June 2017

Publication Date:
26 September 2017 (online)


Published as part of the Special Topic Modern Strategies for Borylation in Synthesis

Abstract

Arylboronic acids and their derivatives are widely used in organic synthesis. Conventional methods for their preparation require either reactive organometallic reagents or transition-metal-mediated processes. In recent years, transition-metal-free reactions for aryl C–B bond formation that obviate preformed organometallic reagents have gained interest and have developed rapidly. These new reactions have shown significant advantages for the preparation of functionalized molecules. In this review, an overview of the recent advances in transition-metal-free aromatic borylation reactions is provided.

1 Introduction

2 Transition-Metal-Free Transformations of CAr–N Bonds to CAr–B Bonds

3 Transition-Metal-Free Transformations of CAr–X Bonds to CAr–B Bonds

4 Transition-Metal-Free Transformations of CAr–H Bonds to CAr–B Bonds

5 Conclusion

 
  • References


    • For selected reviews of arylboronic acid derivatives, see:
    • 1a Miyaura N. Suzuki A. Chem. Rev. 1995; 95: 2457
    • 1b Hall DG. In Boronic Acids: Preparation and Applications in Organic Synthesis Medicine and Materials. Hall DG. Wiley-VCH; Weinheim: 2011: 1-134
    • 1c Yamaguchi J. Yamaguchi AD. Itami K. Angew. Chem. Int. Ed. 2012; 51: 8960
    • 1d Xu L. Zhang S. Li P. Chem. Soc. Rev. 2015; 44: 8848
    • 1e Neeve EC. Geier SJ. Mkhalid IA. I. Westcott SA. Marder TB. Chem. Rev. 2016; 116: 9091

      For selected references, see:
    • 2a Ishiyama T. Murata M. Miyaura N. J. Org. Chem. 1995; 60: 7508
    • 2b Billingsley KL. Barder TE. Buchwald SL. Angew. Chem. Int. Ed. 2007; 46: 5359
    • 2c So CM. Lau CP. Kwong FY. Angew. Chem. Int. Ed. 2008; 47: 8059
    • 2d Kleeberg C. Dang L. Lin Z. Marder TB. Angew. Chem. Int. Ed. 2009; 48: 5350
    • 2e Nagashima Y. Takita R. Yoshida K. Hirano K. Uchiyama M. J. Am. Chem. Soc. 2013; 135: 18730
    • 2f Zarate C. Manzano R. Martin R. J. Am. Chem. Soc. 2015; 137: 6754
    • 2g Bose SK. Marder TB. Org. Lett. 2014; 16: 4562
    • 2h Niwa T. Ochiai H. Watanabe Y. Hosoya T. J. Am. Chem. Soc. 2015; 137: 14313
    • 2i Lam KC. Marder TB. Lin Z. Organometallics 2010; 29: 1849
    • 2j Bose SK. Brand S. Omoregie HO. Haehnel M. Maier J. Bringmann G. Marder TB. ACS Catal. 2016; 6: 8332
    • 2k Zhou J. Kuntze-Fechner MW. Bertermann R. Paul US. D. Berthel JH. J. Friedrich A. Du Z. Marder TB. Radius U. J. Am. Chem. Soc. 2016; 138: 5250
    • 2l Bose SK. Deißenberger A. Eichhorn A. Steel PG. Lin Z. Marder TB. Angew. Chem. Int. Ed. 2015; 54: 11843
    • 2m Adams CJ. Baber RA. Batsanov AS. Bramham G. Charmant JH. P. Haddow MF. Howard JA. K. Lam WH. Lin Z. Marder TB. Norman NC. Orpen AG. Dalton Trans. 2006; 1370
    • 2n Xu L. Li P. Chem. Commun. 2015; 51: 5656

      For selected references on catalytic C–H borylation, see:
    • 3a Iverson CN. Smith MR. J. Am. Chem. Soc. 1999; 121: 7696
    • 3b Chen H. Schlecht S. Semple TC. Hartwig JF. Science (Washington, D. C.) 2000; 287: 1995
    • 3c Ishiyama T. Takagi J. Ishida K. Miyaura N. Anastasi NR. Hartwig JF. J. Am. Chem. Soc. 2002; 124: 390
    • 3d Kawamorita S. Ohmiya H. Hara K. Fukuoka A. Sawamura M. J. Am. Chem. Soc. 2009; 131: 5058
    • 3e Dai HX. Yu JQ. J. Am. Chem. Soc. 2012; 134: 134
    • 3f Xu L. Ding S. Li P. Angew. Chem. Int. Ed. 2014; 53: 1822
    • 3g Obligacion JV. Semproni SP. Chirik PJ. J. Am. Chem. Soc. 2014; 136: 4133
    • 3h Zhang L.-S. Chen G. Wang X. Guo Q.-Y. Zhang X.-S. Pan F. Chen K. Shi Z.-J. Angew. Chem. Int. Ed. 2014; 53: 3899
    • 3i Wang G. Xu L. Li P. J. Am. Chem. Soc. 2015; 137: 8058
    • 3j Wang G. Wang H. Ding Y. Zhou J. Mao S. Li P. J. Am. Chem. Soc. 2017; 139: 91
    • 3k Konishi S. Kawamorita S. Iwai T. Steel PG. Marder TB. Sawamura M. Chem. Asian J. 2014; 9: 434
    • 3l Tajuddin H. Harrisson P. Bitterlich B. Collings JC. Sim N. Batsanov AS. Cheung MS. Kawamorita S. Maxwell AC. Shukla L. Morris J. Lin Z. Marder TB. Steel PG. Chem. Sci. 2012; 3: 3505
    • 3m Hurst TE. Macklin TK. Becker M. Hartmann E. Kügel W. Parisienne-La Salle JC. Batsanov AS. Marder TB. Snieckus V. Chem. Eur. J. 2010; 16: 8155
    • 3n Mkhalid IA. I. Coventry DN. Albesa-Jové D. Batsanov AS. Howard JA. K. Perutz RN. Marder TB. Angew. Chem. Int. Ed. 2006; 45: 489
    • 3o Shimada S. Batsanov AS. Howard JA. K. Marder TB. Angew. Chem. Int. Ed. 2001; 40: 2168
    • 3p Lam WH. Lam KC. Lin Z. Shimada S. Perutz RN. Marder TB. Dalton Trans. 2004; 1556
    • 3q Cho JY. Tse MK. Holmes D. Maleczka RE. Smith MR. Science (Washington, D. C.) 2002; 295: 305
    • 4a Mkhalid IA. I. Barnard JH. Marder TB. Murphy JM. Hartwig JF. Chem. Rev. 2010; 110: 890
    • 4b Chow WK. Yuen OY. Choy PY. So CM. Lau CP. Wong WT. Kwong FY. RSC Adv. 2013; 3: 12518
  • 5 Mo F. Jiang Y. Qiu D. Zhang Y. Wang J. Angew. Chem. Int. Ed. 2010; 49: 1846
  • 6 Qiu D. Jin L. Zheng Z. Meng H. Mo F. Wang X. Zhang Y. Wang J. J. Org. Chem. 2013; 78: 1923
  • 7 Yu J. Zhang L. Yan G. Adv. Synth. Catal. 2012; 354: 2625
  • 8 Zhu C. Yamane M. Org. Lett. 2012; 14: 4560
  • 9 Erb W. Albini M. Rouden J. Blanchet J. J. Org. Chem. 2014; 79: 10568
  • 10 Zhao CJ. Xue D. Jia ZH. Wang C. Xiao JL. Synlett 2014; 25: 1577
  • 11 Yamamoto E. Izumi K. Horita Y. Ito H. J. Am. Chem. Soc. 2012; 134: 19997
  • 12 Yamamoto E. Ukigai S. Ito H. Chem. Sci. 2015; 6: 2943
    • 13a Uematsu R. Yamamoto E. Maeda S. Ito H. Taketsugu T. J. Am. Chem. Soc. 2015; 137: 4090
    • 13b Cheung MS. Marder TB. Lin Z. Organometallics 2011; 30: 3018
  • 14 Zhang JM. Wu H.-H. Zhang JL. Eur. J. Org. Chem. 2013; 6263
  • 15 Miralles N. Romero RM. Fernándes E. Muñiz K. Chem. Commun. 2015; 51: 14068
    • 16a Chen K. Zhang S. He P. Li PF. Chem. Sci. 2016; 7: 3676
    • 16b Cambié D. Bottecchia C. Straathof NJ. W. Hessel V. Noël T. Chem. Rev. 2016; 116: 10276
    • 16c Su Y. Straathof NJ. W. Hessel V. Noël T. Chem. Eur. J. 2014; 20: 10562

      For selected references on the discussion about diboron reagents:
    • 17a Pietsch S. Neeve EC. Apperley DC. Bertermann R. Mo F. Qiu D. Cheung MS. Dang L. Wang J. Radius U. Lin Z. Kleeberg C. Marder TB. Chem. Eur. J. 2015; 21: 7082
    • 17b Dewhurst RD. Neeve EC. Braunschweig H. Marder TB. Chem. Commun. 2015; 51: 9594
  • 19 Chen K. Cheung MS. Lin ZY. Li PF. Org. Chem. Front. 2016; 3: 875
    • 20a Fagnoni M. Albini A. Acc. Chem. Res. 2005; 38: 713
    • 20b Freccero M. Fagnoni M. Albini A. J. Am. Chem. Soc. 2003; 125: 13182
    • 20c Protti S. Fagnoni M. Albini A. Angew. Chem. Int. Ed. 2005; 44: 5675
  • 21 Mfuh AM. Doyle JD. Chhetri B. Arman HD. Larionov OV. J. Am. Chem. Soc. 2016; 138: 2985
  • 22 Mfuh AM. Nguyen VT. Chhetri B. Burch JE. Doyle JD. Nesterov VN. Arman HD. Larionov OV. J. Am. Chem. Soc. 2016; 138: 8408
  • 23 Zhang L. Jiao L. J. Am. Chem. Soc. 2017; 139: 607
  • 24 Lee Y. Baek S. Park J. Kim ST. Tussupbayev S. Kim J. Baik MH. Cho SH. J. Am. Chem. Soc. 2017; 139: 976
  • 25 Prokofjevs A. Kamf JW. Vedejs E. Angew. Chem. Int. Ed. 2011; 50: 2098
  • 26 Niu L. Yang H. Wang R. Fu H. Org. Lett. 2012; 14: 2618
    • 27a Bagutski V. Grosso AD. Carrillo JA. Cade IA. Helm MD. Lawson JR. Singleton PJ. Solomon SA. Marcelli T. Ingleson MJ. J. Am. Chem. Soc. 2013; 135: 474
    • 27b Del Grosso A. Pritchard RG. Muryn CA. Ingleson MJ. Organometallics 2010; 29: 241
    • 27c Del Grosso A. Singleton PJ. Muryn CA. Ingleson MJ. Angew. Chem. Int. Ed. 2011; 50: 2012
    • 27d Del Grosso A. Helm MD. Solomon SA. Caras-Quintero D. Ingleson MJ. Chem. Commun. 2011; 47: 12459
    • 27e Ingleson MJ. Synlett 2012; 1411
    • 28a Légaré MA. Courtemanche MA. Rochette É. Fontaine F.-G. Science (Washington, D. C.) 2015; 349: 513
    • 28b Bose SK. Marder TB. Science (Washington, D. C.) 2015; 349: 473
    • 29a Ma Y. Wang B. Zhang L. Hou ZO. V. J. Am. Chem. Soc. 2016; 138: 3663
    • 29b Chen Q.-A. Klare HF. Oestreich M. J. Am. Chem. Soc. 2016; 138: 7868
    • 29c Kleeberg C. Borner C. Eur. J. Inorg. Chem. 2013; 2799
    • 30a Chen K. He P. Zhang S. Li P. Chem. Commun. 2016; 52: 9125
    • 30b Qiu D. Meng H. Jin L. Wang S. Tang S. Wang X. Mo F. Zhang Y. Wang J. Angew. Chem. Int. Ed. 2013; 52: 11581