Synthesis 2017; 49(22): 4942-4954
DOI: 10.1055/s-0036-1590924
feature
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Isoxazolidinyl Epoxides by Oxone Treatment of 2,3-Dihydroisoxazoles in Acetone–Water Solution: A New Stereoselective Approach to Hydroxy-Substituted Isoxazolidines

Ondrej Záborský
a   Institute of Organic Chemistry, Catalysis and Petrochemistry, Slovak University of Technology in Bratislava, Radlinského 9, 81237 Bratislava, Slovak Republic   Email: robert.fischer@stuba.sk
,
Radka Štadániová
a   Institute of Organic Chemistry, Catalysis and Petrochemistry, Slovak University of Technology in Bratislava, Radlinského 9, 81237 Bratislava, Slovak Republic   Email: robert.fischer@stuba.sk
,
Jana Doháňošová
b   Central Laboratories, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovak Republic
,
Ján Moncol
c   Institute of Inorganic Chemistry, Technology and Materials, Slovak University of Technology in Bratislava, Radlinského 9, 81237 Bratislava, Slovak Republic
,
Róbert Fischer*
a   Institute of Organic Chemistry, Catalysis and Petrochemistry, Slovak University of Technology in Bratislava, Radlinského 9, 81237 Bratislava, Slovak Republic   Email: robert.fischer@stuba.sk
› Author Affiliations
This work was supported by the Slovak Grant Agencies APVV, Bratislava (project no. APVV-14-0147), VEGA, Bratislava (project no. 1/0488/14), and ASFEU, Bratislava (ITMS project No. 26240120001 and 26240120025). This article was created with the support of the ­MŠVVaŠ of the Slovak Republic within the Research and Development ­Operational Programme for the project ‘University Science Park of STU Bratislava’ (ITMS project No. 26240220084) co-funded by the ­European Regional Development Fund.
Further Information

Publication History

Received: 27 July 2017

Accepted after revision: 12 September 2017

Publication Date:
27 September 2017 (online)


Abstract

A practical and efficient synthesis of new class of isoxazoli­dinyl epoxides by direct treatment of 4,5-unsubstituted 2,3-dihydroisoxazoles with Oxone and NaHCO3 in acetone/water solution is described. All epoxidation reactions proceed with excellent anti-selectivity and provide stable products in very good yields. A concept for the development of stereoselective approach to 3,4-trans-hydroxy-substituted isoxazolidines, namely triazole derivatives as important molecules in medicinal chemistry is presented. The synthesis is characterized by highly syn-stereoselective conversion of epoxides to anomeric bromoisoxazolidines, which are found to be powerful reaction intermediates for the coupling reactions with various nucleophiles.

Supporting Information

 
  • References


    • For selected reviews and papers on the isoxazolidines as intermediates in natural products synthesis, see:
    • 1a Robertson J. Stevens K. Nat. Prod. Rep. 2017; 34: 62
    • 1b Brandi A. Cardona F. Cicchi S. Cordero FM. Goti A. Chem. Eur. J. 2009; 15: 7808
    • 1c Gothelf KV. Jørgensen KA. Chem. Rev. 1998; 98: 863
    • 1d Parsons PJ. Penkett CS. Shell AJ. Chem. Rev. 1996; 96: 195

      For selected reviews and papers on the use of isoxazolidines in the pharmaceutical research, see:
    • 2a Berthet M. Cheviet T. Dujardin G. Parrot I. Martinez J. Chem. Rev. 2016; 116: 15235
    • 2b Chiacchio MA. Giofré SV. Romeo R. Romeo G. Chiacchio U. Curr. Org. Synth. 2016; 13: 726
    • 2c Chen H. Wang Z. Zhang Y. Huang Y. J. Org. Chem. 2013; 78: 3503
    • 2d Chakraborty B. Samanta A. Sharma PK. Chhetri MS. Kafley S. Banerjee A. Sinha C. J. Chem. Pharm. Res. 2010; 4: 727
    • 2e Shinkai H. Onogi S. Tanaka M. Shibata T. Iwao M. Wakitani K. Uchida I. J. Med. Chem. 1998; 41: 1927
  • 3 Záborský O. Šoral M. Fischer R. Tetrahedron Lett. 2015; 56: 2155
    • 4a Malatinský T. Spišáková M. Babjak M. Doháňošová J. Marek J. Moncol J. Fischer R. Eur. J. Org. Chem. 2017; 1086
    • 4b Beňadiková D. Čurillová J. Lacek T. Rakovský E. Moncol J. Doháňošová J. Fischer R. Tetrahedron 2014; 70: 5585
    • 4c Fischer R. Stanko B. Prónayová N. Synlett 2013; 24: 2132
  • 5 Záborský O. Malatinský T. Marek J. Moncol J. Fischer R. Eur. J. Org. Chem. 2016; 3993
    • 6a Katritzky AR. Tala SR. Avan I. J. Org. Chem. 2009; 74: 8690
    • 6b Behr J.-B. Chevrier C. Defoin A. Tarnus C. Streith J. Tetrahedron 2003; 59: 543
    • 6c Stewart AO. Brooks DW. J. Org. Chem. 1992; 57: 5020
    • 6d Johnson JE. Ghafouripour A. Haung YK. Cordes AW. Pennington WT. Exner O. J. Org. Chem. 1985; 50: 993

      For selected papers on the asymmetric conjugate additions between N-protected hydroxylamines and enals, see:
    • 7a Dou Q.-Y. Tu Y.-Q. Zhang Y. Tian J.-M. Zhang F.-M. Wang S.-H. Adv. Synth. Catal. 2016; 358: 874
    • 7b Maltsev OV. Kucherenko AS. Chimishkyan AL. Zlotin SG. Tetrahedron: Asymmetry 2010; 21: 2659
    • 7c Juarez-Garcia ME. Yu S. Bode JW. ­Tetrahedron 2010; 66: 4841
    • 7d Zhao G.-L. Lin S. Korotvička A. Deiana L. Kullberg M. Córdova A. Adv. Synth. Catal. 2010; 352: 2291
    • 7e Ibrahem I. Rios R. Vesely J. Zhao G.-L. Córdova A. Chem. Commun. 2007; 849
    • 7f Ibrahem I. Rios R. Vesely J. Zhao G.-L. Córdova A. Synthesis 2007; 1153

      For selected reviews on the proline-catalyzed asymmetric reactions, see:
    • 8a Liu J. Wang L. Synthesis 2017; 49: 960
    • 8b Enders D. Wang C. Liebich JX. Chem. Eur. J. 2009; 15: 11058
    • 8c List B. Tetrahedron 2002; 58: 5573
    • 9a Motorina IA. Sviridova LA. Golubeva GA. Bundel YuG. Chem. Heterocycl. Compd. 1990; 26: 815
    • 9b Motorina IA. Sviridova LA. Golubeva GA. Bundel YuG. Tetrahedron Lett. 1989; 30: 117
    • 9c Zelenin KN. Motorina IA. Sviridova LA. Bezhan IP. Ershov Yu. Golubeva GA. Bundel YuG. Chem. Heterocycl. Compd. 1987; 23: 1018
  • 10 1H NMR data for 1-[3-phenylisoxazol-2(3H)-yl]ethanone (4e): 1H NMR (300 MHz, CDCl3): δ = 7.39–7.25 (m, 5 H, C6H5), 6.69 (dd, J = 3.1, 2.5 Hz, 1 H, 5-H), 6.08 (br s, 1 H, 3-H), 5.25 (dd, J = 3.1, 2.5 Hz, 1 H, 4-H), 2.18 (s, 3 H, CH3). 13C NMR spectrum was not recorded due to the lower quality of the isolated material.
    • 11a Peng B. Geerdink D. Farès C. Maulide N. Angew. Chem. Int. Ed. 2014; 53: 5462
    • 11b Beatty MF. Jennings-White C. Avery MA. J. Chem. Soc., Chem. Commun. 1991; 351

      For selected papers on the oxidations of furanose glycals with DMDO, see:
    • 12a Singh I. Seitz O. Org. Lett. 2006; 8: 4319
    • 12b Jung ME. Toyota A. de Clercq E. Balzarini J. Monatsh. Chem. 2002; 133: 499
    • 12c Mann RK. Parsons JG. Rizzacasa MA. J. Chem. Soc., Perkin Trans. 1 1998; 1283
    • 12d Timmers CM. Verheijen JC. van der Marel GA. van Boom JH. Synlett 1997; 851
    • 12e McDonald FE. Gleason MM. J. Am. Chem. Soc. 1996; 118: 6648
    • 12f McVinish LM. Rizzacasa MA. ­Tetrahedron Lett. 1994; 35: 923
    • 12g Dushin RG. Danishefsky SJ. J. Am. Chem. Soc. 1992; 114: 655
    • 12h Chow K. Danishefsky SJ. J. Org. Chem. 1990; 55: 4211
  • 13 Cheshev P. Marra A. Dondoni A. Carbohydr. Res. 2006; 341: 2714
    • 14a Romeo R. Giofrè SV. Carnovale C. Campisi A. Parenti R. Bandini L. Chiacchio MA. Bioorg. Med. Chem. 2013; 21: 7929
    • 14b Piotrowska DG. Balzarini J. Głowacka IE. Eur. J. Med. Chem. 2012; 47: 501

      For selected papers on the acid-catalyzed anomerizations of related methyl furanosides, see:
    • 15a Forsman JJ. Wärnå J. Murzin DYu. Leino R. Eur. J. Org. Chem. 2009; 5666
    • 15b Song Y. Yang R. Ding H. Sun Q. Xiao Q. Ju Y. Synthesis 2011; 1213
    • 15c Li N.-S. Lu J. Piccirilli JA. Org. Lett. 2007; 9: 3009
    • 15d Paquette LA. Zhang Y. J. Org. Chem. 2006; 71: 4353
    • 15e Suzuki T. Chida N. Chem. Lett. 2003; 32: 190
    • 15f Takahashi S. Kuzuhara H. Nakajima M. Tetrahedron 2001; 57: 6915
    • 15g Martin OR. Kurz KG. Rao SP. J. Org. Chem. 1987; 52: 2922
  • 16 Ning J. Kong F. Carbohydr. Res. 2001; 330: 165
    • 17a Prévost M. St-Jean O. Guindon Y. J. Am. Chem. Soc. 2010; 132: 12433
    • 17b Nishida Y. Shingu Y. Dohi H. Kobayashi K. Org. Lett. 2003; 5: 2377
    • 17c Shingu Y. Nishida Y. Dohi H. Kobayashi K. Org. Biomol. Chem. 2003; 1: 2518
    • 17d Gillard JW. Israel M. Tetrahedron Lett. 1981; 22: 513
    • 18a Taber DF. DeMatteo W. Hassan RA. Org. Synth. 2013; 90: 350
    • 18b Hayes CJ. Sherlock AE. Selby MD. Org. Biomol. Chem. 2006; 4: 193
  • 19 CCDC 1558911 (5a), 1558912 (6a), 1558913 (5c), and 1558914 (3e) contain the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
    • 20a Burla MC. Caliandro R. Carrozzini B. Cascarano GL. Cuocci C. Giacovazzo C. Mallamo M. Mazzone A. Polidori D. J. Appl. Crystallogr. 2015; 48: 306
    • 20b Sheldrick GM. Acta Crystallogr., Sect. A 2015; 71: 3
    • 20c Sheldrick GM. Acta Crystallogr., Sect. C 2015; 71: 3
    • 20d Dolomanov O. Bourhis LJ. Goldea RI. Howard JA. K. Puschmann H. J. Appl. Crystallogr. 2009; 42: 339
    • 20e Palatinus L. Chapuis G. J. Appl. Crystallogr. 2007; 40: 786
  • 21 Parsons S. Flack HD. Wagner T. Acta Crystallogr., Sect. B 2013; 69: 249