Synlett 2018; 29(04): 447-451
DOI: 10.1055/s-0036-1590949
letter
© Georg Thieme Verlag Stuttgart · New York

Ammonium Tungstate as an Effective Catalyst for Selective Oxidation of Alcohols to Aldehydes or Ketones with Hydrogen Peroxide under Water – A Synergy of Graphene Oxide

Huihui Fu
School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. of China   Email: xhpeng@mail.njust.edu.cn
,
Chuanfeng Hu
School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. of China   Email: xhpeng@mail.njust.edu.cn
,
Zhida Huang
School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. of China   Email: xhpeng@mail.njust.edu.cn
,
Jianhao Zhou
School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. of China   Email: xhpeng@mail.njust.edu.cn
,
Xinhua Peng*
School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. of China   Email: xhpeng@mail.njust.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 17 August 2017

Accepted after revision: 15 October 2017

Publication Date:
17 November 2017 (online)


Abstract

Ammonium tungstate was found to be a facile and efficient catalyst for selective oxidation of alcohols to the corresponding carbonyl compounds with hydrogen peroxide as oxidant. Heterogeneous graphene oxide as acid effectively intensified the transformations and resulted in excellent yields. The use of water as solvent rendered the reactions promising both economically and environmentally.

Supporting Information

 
  • References and Notes

    • 1a Enache DI. Edwards JK. Landon P. Solsona-Espriu B. Carley AF. Herzing AA. Watanabe M. Kiely CJ. Knight DW. Hutchings GJ. Science 2006; 311: 362
    • 1b Lin X. Nie ZZ. Zhang LY. Mei SC. Chen Y. Zhang BS. Zhang RL. Liu ZG. Green Chem. 2017; 19: 2164
    • 2a ten BrinkG. J. Arends IW. C. E. Sheldon RA. Science 2000; 287: 1636
    • 2b Lee DG. Spitzer UA. J. Org. Chem. 1970; 35: 3589
    • 2c Parmeggiani C. Matassini C. Cardona F. Green Chem. 2017; 19: 2030
    • 3a Guo ML. Li HZ. Green Chem. 2007; 9: 421
    • 3b Chen L. Zhou T. Chen LF. Ye YM. Qi ZW. Frenud H. Sundmacher K. Chem. Commun. 2011; 9354
    • 3c Jiang N. Ragauskas AJ. Tetrahedron Lett. 2005; 46: 3323
    • 3d Ma QG. Xing WZ. Xu JH. Peng XH. Catal. Commun. 2014; 53: 5
    • 4a Sharma RK. Gulati S. Pandey A. J. Porous Mater. 2013; 20: 937
    • 4b Li M. Wu S. Yang X. Hu J. Peng L. Bai L. Huo Q. Guan J. Appl. Catal., A 2017; 543: 61
    • 5a Kato CN. Hasegawa M. Sato T. Yoshizawa A. Inoue T. Mori W. J. Catal. 2005; 230: 226
    • 5b Sun N. Zhang X. Jin L. Hu B. Shen Z. Hu X. Catal. Commun. 2017; 101: 5
  • 6 Liu JH. Wang F. Sun KP. Xu XL. Catal. Commun. 2008; 9: 386
    • 7a Barak G. Dakka J. Sasson Y. J. Org. Chem. 1988; 53: 3553
    • 7b Shimoyama Y. Ishizuka T. Kotani H. Shiota Y. Yoshizawa K. Mieda K. Ogura T. Okajima T. Nozawa S. Kojima T. Angew. Chem. 2016; 128: 14247
    • 8a Bhat PB. Bhat BR. New J. Chem. 2015; 39: 273
    • 8b Martin SE. Garrone A. Tetrahedron Lett. 2003; 44: 549
  • 9 Zhang XM. Zhang ZR. Suo JS. Li SB. Catal. Lett. 2000; 66: 175
    • 10a Espenson JH. Zhu Z. Zauche TH. J. Org. Chem. 1999; 64: 1191
    • 10b Sharma RK. Yadav M. Monga Y. Gaur R. Adholeya A. Zboril R. Varma RS. Gawande MB. ACS Sustainable Chem. Eng. 2016; 4: 1123
    • 10c Prakash S. Charan C. Singh AK. Shahi VK. Appl. Catal., B 2013; 132: 62
    • 10d Malan FP. Singleton E. Bulling BW. Cukrowski I. Rooyen PH. Landman M. Mol. Catal. 2017; 432: 47
    • 10e Ren F. Tian X. Ren YL. Zhao S. Wang J. Zhao B. Catal. Commun. 2017; 101: 98
    • 10f Hu YL. Fang D. C. R. Chim. 2015; 18: 614
    • 11a Maurya MR. Saini N. Avecilla F. Inorg. Chim. Acta 2015; 438: 168
    • 11b Choi JH. Kim JK. Park DR. Kang TH. Song JH. Song IK. J. Mol. Catal. A: Chem. 2013; 371: 111
  • 12 Bortolini O. Conte V. DiFuria F. Modena G. J. Org. Chem. 1986; 51: 2661
    • 13a Sato K. Aoki M. Takagi J. Noyori R. J. Am. Chem. Soc. 1997; 119: 12386
    • 13b Sato K. Takagi J. Aoki M. Noyori R. Tetrahedron Lett. 1998; 39: 7549
    • 14a Dhakshinamoorthy A. Alvaro M. Concepción P. Chem. Commun. 2012; 5443
    • 14b Wang HL. Deng TS. Wang YX. Cui XJ. Qi YQ. Mu XD. Hou XL. Zhu YL. Green Chem. 2013; 15: 2379
  • 15 Stankovich S. Piner RD. Nguyen SB. T. Ruoff RS. Carbon 2006; 44: 3342
  • 16 Mirza-Aghayan M. Kashef-Azar E. Boukherroub R. Tetrahedron Lett. 2012; 53: 4962
    • 17a Dreyer DR. Jia HP. Bielawski CW. Angew. Chem. 2010; 122: 6965
    • 17b Mirza-Aghayan M. Boukherroub R. Nemati M. Rahimifard M. Tetrahedron Lett. 2012; 53: 2473
    • 17c Mirza-Aghayan M. Kashef-Azar E. Boukherroub R. Tetrahedron Lett. 2012; 53: 4962
    • 17d Dreyer DR. Bielawski CW. Chem. Sci. 2011; 2: 1233
    • 18a Sheldon RA. Arends I. Dijksman A. Catal. Today 2000; 57: 157
    • 18b Zhan BZ. Thompson A. Tetrahedron 2004; 60: 2917
    • 18c Li X. Cao R. Lin Q. Catal. Commun. 2015; 69: 5
    • 18d Ma QG. Xing WZ. Xu JH. Peng XH. Chem. Lett. 2014; 43: 941
    • 18e Xia XM. Gao X. Xu JH. Hu CF. Peng XH. Synlett 2016; 28: 607
  • 19 Experimental procedures: GO (0.01 g) was added into water (3 mL) to generate a stable colloidal suspension under mild ultrasonic treatment. Afterwards, the alcohol (2 mmol) and (NH4)5H5[H2(WO4)6] (0.03 mmol, M = 1602) were added. The mixture was stirred for 15 min at room temperature. Subsequently, hydrogen peroxide (30 wt%, 8 mmol) was added dropwise and the mixture was heated to 70 °C until the reaction was complete (monitored by TLC). GO could then be readily separated from the mixtures by centrifugation, and then ethyl acetate was added to the mixture to extract organic constituents. Finally, the organic extracts were concentrated under reduced pressure and purified by column chromatography.Cyclohexanone (Table [2], entry 1): Yield: 0.18 g (93%); colorless liquid. 1H NMR (500 MHz, CDCl3): δ = 2.37 (t, J = 6.7 Hz, 4 H), 2.07–1.82 (m, 4 H), 1.82–1.62 (m, 2 H). 13C NMR (126 MHz, CDCl3): δ = 211.98, 41.92, 26.99, 24.94