Synthesis 2018; 50(09): 1921-1925
DOI: 10.1055/s-0036-1591538
paper
© Georg Thieme Verlag Stuttgart · New York

A Practical and Efficient Synthesis of (±)-Anatabine

Federico V. Rossi
a   Green Chemistry Group, School of Sciences and Technology, Chemistry Division, University of Camerino, Via S. Agostino n. 1, 62032 Camerino (MC), Italy   Email: alessandro.palmieri@unicam.it
,
Roberto Ballini
a   Green Chemistry Group, School of Sciences and Technology, Chemistry Division, University of Camerino, Via S. Agostino n. 1, 62032 Camerino (MC), Italy   Email: alessandro.palmieri@unicam.it
,
Luciano Barboni
a   Green Chemistry Group, School of Sciences and Technology, Chemistry Division, University of Camerino, Via S. Agostino n. 1, 62032 Camerino (MC), Italy   Email: alessandro.palmieri@unicam.it
,
Pietro Allegrini
b   Indena S.p.A., Viale Ortles n. 12, 20139, Milan, Italy
,
Alessandro Palmieri*
a   Green Chemistry Group, School of Sciences and Technology, Chemistry Division, University of Camerino, Via S. Agostino n. 1, 62032 Camerino (MC), Italy   Email: alessandro.palmieri@unicam.it
› Author Affiliations
This work was supported by the University of Camerino and Indena S.p.a.
Further Information

Publication History

Received: 07 December 2017

Accepted after revision: 11 December 2017

Publication Date:
12 February 2018 (online)


Abstract

A new efficient synthesis of racemic anatabine is reported. The title target was obtained in an excellent overall yield of 70%, by a five-step synthesis, using cheap reagents and mild reaction conditions.

Supporting Information

 
  • References

    • 1a Quan PM. Karns TK. B. Quin LD. J. Org. Chem. 1965; 30: 2769
    • 1b Leete E. Slattery SA. J. Am. Chem. Soc. 1976; 98: 6326
    • 2a Paris D. Beaulieu-Abdelahad D. Bachmeier C. Reed J. Ait-Ghezala G. Bishop A. Chao J. Mathura V. Crawford F. Mullan M. Eur. J. Pharmacol. 2011; 670: 384
    • 2b Caturegli P. De Remigis A. Ferlito M. Landek-Salgado MA. Iwama S. Tzou S.-C. Ladenson PW. Endocrinology 2012; 153: 4580
    • 2c Paris D. Beaulieu-Adelahad D. Abdullah L. Bachmeier C. Ait-Ghezala G. Reed J. Verma M. Crawford F. Mullan M. Eur. J. Pharmacol. 2013; 698: 145
  • 3 Mello NK. Fivel PA. Kohut SJ. BarakCaine S. Exp. Clin. Psychopharmacol. 2014; 22: 1
    • 4a Felpin F.-X. Girard S. Vo-Thanh G. Robins RJ. Villiéras J. Lebreton J. J. Org. Chem. 2001; 66: 6305
    • 4b Felpin F.-X. Vo-Thanh G. Robins RJ. Villiéras J. Lebreton J. Synlett 2000; 1646
    • 4c Balasubramanian T. Hassner A. Tetrahedron: Asymmetry 1998; 9: 2201
    • 4d Ayers JT. Xu R. Dwoskin LP. Crooks PA. AAPS J 2005; 7: E752
    • 5a Saloranta T. Leino R. Tetrahedron Lett. 2011; 52: 4619
    • 5b Rouchaud A. Kem WR. J. Heterocycl. Chem. 2010; 47: 569
    • 5c Yang C.-M. Tanner DD. Can. J. Chem. 1997; 75: 616
    • 5d Deo NM. Crooks PA. Tetrahedron Lett. 1996; 37: 1137
    • 6a Kesztler S. Ber. Dtsch. Chem. Ges. 1937; 70: 704
    • 6b Puthiaparampil T. David TK. Raju MS. Patent US2011/0237627-A1, 2011
    • 6c Williams JR. Wright C. Patent US2012/0003341-A1, 2012
    • 7a Ballini R. Bosica G. Fiorini D. Palmieri A. Green Chem. 2005; 7: 825
    • 7b Palmieri A. Gabrielli S. Lanari D. Vaccaro L. Ballini R. Adv. Synth. Catal. 2011; 353: 1425
    • 7c Palmieri A. Gabrielli S. Cimarelli C. Ballini R. Green Chem. 2011; 13: 3333
    • 7d Gabrielli S. Ballini R. Palmieri A. Monatsh. Chem. 2013; 144: 509
    • 7e Ballini R. Gabrielli S. Palmieri A. Petrini M. RSC Adv. 2014; 4: 43258
    • 7f Palmieri A. Gabrielli S. Parlapiano M. Ballini R. RSC Adv. 2015; 5: 4210
    • 7g Gabrielli S. Giardinieri A. Sampaolesi S. Ballini R. Palmieri A. Molecules 2016; 21: 776
  • 8 Krompiec S. Mazik M. Zieliński W. Wagner P. Smolik M. Polish J. Chem. 1996; 70: 1223
  • 9 Vilaivan T. Winotapan C. Shinada T. Ohfune Y. Tetrahedron Lett. 2001; 42: 9073
  • 10 Skowerski K. Białecki J. Tracz A. Olszewski TK. Green Chem. 2014; 16: 1125
    • 11a Fustero S. Ibáñez I. Barrio P. Maestro MA. Catalán S. Org. Lett. 2013; 15: 832
    • 11b Shendage DM. Froehlich R. Haufe G. Org. Lett. 2004; 6: 3675
    • 11c Blondelle SE. Houghten RA. Int. J. Pept. Protein Res. 1993; 41: 522
  • 12 Compound 11; colorless oil. IR (neat): 712, 661, 1136, 1187, 1448, 1685, 3043 cm–1. The NMR spectra show a mixture of two rotamers (ratio 2:1) as result of hindered rotation of the amide bond. 1H NMR (400 MHz, CDCl3): δ = 2.64–2.89 (m, 3 H), 3.24 (br d, J = 18.7 Hz, 0.5 H), 3.53 (m, 2 H), 4.23 (br d, J = 18.2 Hz, 1 H), 4.65 (br d, J = 18.7 Hz, 0.5 H), 5.39 (br d, J = 5.7 Hz, 0.5 H), 5.68 (m, 1.5 H), 5.95 (m, 0.5 H), 6.07 (m, 2 H), 7.31 (m, 1.5 H), 7.66 (m, 1.5 H), 8.59 (m, 3 H). 13C NMR (100 MHz, CDCl3): δ = 26.3, 27.9, 40.1, 41.1, 48.5, 52.1, 116.6 (q, 1 J C,F = 287.9 Hz), 116.8 (q, 1 J C,F = 287.9 Hz), 122.8, 123.0, 123.7, 123.8, 124.0, 124.3, 133.3, 134.0, 134.8, 135.5, 148.3, 148.7, 149.3, 149.4, 156.0 (2 J C,F = 36.3 Hz), 156.6 (2 J C,F = 36.3 Hz). 19F NMR (376 MHz, CDCl3): δ = –68.3 (s, 1.5 F), –69.5 (s, 3 F). MS (EI): m/z = 256 (M+), 255, 187, 159 (100%), 105, 78, 54. Anal. Calcd for C12H11F3N2O (256.23): C, 56.25; H, 4.33; N, 10.93. Found: C, 56.21; H, 4.30; N, 10.90.
    • 13a The hydrolysis reaction was even tested using 2-MeTHF and CPME instead THF; however, only traces of 6 (<3% by GC) were detected after 2 h.
    • 13b The N-Boc anatabine 5 can be directly converted into 6 in lower yield (72%) and longer reaction time (8 h) working at 0 °C in a 0.06 M TFA/CH2Cl2 (1:1) solution.