Synlett 2018; 29(13): 1735-1740
DOI: 10.1055/s-0036-1591602
letter
© Georg Thieme Verlag Stuttgart · New York

Efficient Homocoupling of Aryl- and Alkenylboronic Acids in the Presence of Low Loadings of [{Pd(μ–OH)Cl(IPr)}2]

Sylwia Ostrowska
a   Adam Mickiewicz University in Poznań, Faculty of Chemistry, Umultowska 89b, 61-614 Poznań, Poland   Email: pietrasz@amu.edu.pl
,
Szymon Rogalski
a   Adam Mickiewicz University in Poznań, Faculty of Chemistry, Umultowska 89b, 61-614 Poznań, Poland   Email: pietrasz@amu.edu.pl
,
Jan Lorkowski
a   Adam Mickiewicz University in Poznań, Faculty of Chemistry, Umultowska 89b, 61-614 Poznań, Poland   Email: pietrasz@amu.edu.pl
,
Jędrzej Walkowiak
b   Adam Mickiewicz University in Poznań, Centre for Advanced Technologies, Umultowska 89c, 61-614 Poznań, Poland
,
a   Adam Mickiewicz University in Poznań, Faculty of Chemistry, Umultowska 89b, 61-614 Poznań, Poland   Email: pietrasz@amu.edu.pl
› Author Affiliations
The research was co-financed by the National Centre for Research and Development (NCBR), Project ORGANOMET No: PBS2/A5/40/2014, and the National Science Centre (Poland), project UMO-2013/11/N/ST5/01612.
Further Information

Publication History

Received: 23 May 2018

Accepted after revision: 09 June 2018

Publication Date:
10 July 2018 (online)


Dedicated to Professor Jacek Gawroński on the occasion of his 75th birthday.

Abstract

NHC–palladium(II) complex [{Pd(μ–OH)Cl(IPr)}2] (IPr = bis(2,6-di­isopropylphenyl)imidazolin-2-ylidene) catalyzes the oxidative coupling of a broad spectrum of aryl- and alkenylboronic acids at loadings down to 5 ppm. At the concentration of 0.05 mol% the catalyst permits an efficient reaction under base-free conditions.

Supporting Information

 
  • References and Notes

  • 1 Aldemir H. Richarz R. Gulder TA. M. Angew. Chem. Int. Ed. 2014; 53: 8286
  • 2 Bringmann G. Gunther C. Ochse M. Schupp O. Tasler S. In Progress in the Chemistry of Organic Natural Products . Vol. 82. Springer; Wien: 2001
    • 3a Bringmann G. Price Mortimer AJ. Keller PA. Gresser MJ. Garner J. Breuning M. Angew. Chem. Int. Ed. 2005; 44: 5384
    • 3b Wencel-Delord J. Panossian A. Leroux FR. Colobert F. Chem. Soc. Rev. 2015; 44: 3418

      For reviews, see:
    • 4a Cepanec I. Synthesis of Biaryls . Elsevier; Amsterdam: 2004
    • 4b Hassan J. Sevignon M. Gozzi C. Schulz E. Lemaire M. Chem. Rev. 2002; 102: 1359
    • 4c Stanforth SP. Tetrahedron 1998; 54: 263
    • 4d Alberico D. Scott ME. Lautens M. Chem. Rev. 2007; 107: 174
    • 4e Yamaguchi J. Itami K. Biaryl Synthesis through Metal-Catalyzed C–H Arylation in Metal-Catalyzed Cross-Coupling Reactions and More . de Meijere A. Brase S. Oestreich M. Wiley-VCH; Weinheim: 2014. 1315
    • 5a Liu C. Zhang H. Shi W. Lei A. Chem. Rev. 2011; 111: 1780
    • 5b Shi W. Liu C. Lei A. Chem. Soc. Rev. 2011; 40: 2761
  • 6 Dhital RN. Sakurai H. Asian J. Org. Chem. 2014; 3: 668
  • 7 Hall DG. Boronic Acids: Preparation Applications in Organic. Synthesis andMedicine. Wiley-VCH; Weinheim: 2005
    • 8a Contreras-Celedón CA. Rincón-Medina JA. Mendoza-Rayo D. Chacón-García L. Appl. Organomet. Chem. 2015; 29: 439
    • 8b Kapdi AR. Dhangar G. Serrano JL. De Haro JA. Lozano P. Fairlamb IJ. S. RSC Adv. 2014; 4: 55305
    • 8c Dwivedi S. Bardhan S. Ghosh P. Das S. RSC Adv. 2014; 4: 41045
    • 8d Zhou Z. Liu M. Wu X. Yu H. Xu G. Xie Y. Appl. Organomet. Chem. 2013; 27: 562
    • 8e Zhou Z. Hu Q. Du Z. Xue J. Zhang S. Xie Y. Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 2012; 42: 940
    • 8f Tairai A. Sarmah C. Das P. Indian J. Chem. 2012; 51B, 843
    • 8g Ciric A. Mathey F. Organometallics 2010; 29: 4785
    • 8h Prastaro A. Ceci P. Chiancone E. Boffi A. Fabrizi G. Cacchi S. Tetrahedron Lett. 2010; 51: 2550
    • 8i Wu N. Li X. Xu X. Wang Y. Xu Y. Chen X. Lett. Org. Chem. 2010; 7: 11
    • 8j Mitsudo K. Shiraga T. Kagen D. Shi D. Becker JY. Tanaka H. Tetrahedron 2009; 65: 8384
    • 8k Mu B. Li T. Fu Z. Wu Y. Catal. Commun. 2009; 10: 1497
    • 8l Mitsudo K. Shiraga T. Tanaka H. Tetrahedron Lett. 2008; 49: 6593
    • 8m Xu Z. Mao J. Hang Y. Catal. Commun. 2008; 9: 97
    • 8n Burns MJ. Fairlamb IJ. S. Kapdi AR. Sehnal P. Taylor RJ. K. Org. Lett. 2007; 9: 5397
    • 8o Yadav JS. Gayathri KU. Ather H. Rehman H. Prasad AR. J. Mol. Catal. A: Chem. 2007; 271: 25
    • 8p Cheng K. Xin B. Zhang Y. J. Mol. Catal. A: Chem. 2007; 273: 240
    • 8q Yamamoto Y. Suzuki R. Hattori K. Nishiyama H. Synlett 2006; 1027
    • 9a Wang Y.-H. Xu M.-C. Liu J. Zhang L.-J. Zhang X.-M. Tetrahedron 2015; 71: 9598
    • 9b Cheng G. Luo M. Eur. J. Org. Chem. 2011; 2519
    • 9c Kaboudin B. Abedi Y. Yokomatsu T. Eur. J. Org. Chem. 2011; 6656
    • 9d Kaboudin B. Haruki T. Yokomatsu T. Synthesis 2011; 91
    • 9e Kirai N. Yamamoto Y. Eur. J. Org. Chem. 2009; 1864
    • 9f Demir AS. Reis O. Emrullahoglu M. J. Org. Chem. 2003; 68: 10130
    • 10a Carrettin S. Guzman J. Corma A. Angew. Chem. Int. Ed. 2005; 44: 2242
    • 10b Gonzalez-Arellano C. Corma A. Iglesias M. Sanchez F. Chem. Commun. 2005; 1990
    • 10c González-Arellano C. Corma A. Iglesias M. Sánchez F. J. Catal. 2006; 238: 497
    • 10d Parida KM. Singha S. Sahoo PC. Sahu S. J. Mol. Catal. A: Chem. 2011; 342-343, 11
    • 10e Matsuda T. Asai T. Shiose S. Kato K. Tetrahedron Lett. 2011; 52: 4779
    • 10f Wang L. Zhang W. Su DS. Meng X. Xiao F.-S. Chem. Commun. 2012; 48: 5476
  • 11 Vogler T. Studer A. Adv. Synth. Catal. 2008; 350: 1963
    • 12a Elias WC. Signori AM. Zaramello L. Albuquerque BL. de Oliveira DC. Domingos JB. ACS Catal. 2017; 7: 1462
    • 12b Sable V. Maindan K. Kapdi AR. Shejwalkar PS. Hara K. ACS Omega 2017; 2: 204
    • 12c Burrueco MI. Mora M. Jiménez-Sanchidrián C. Ruiz JR. Appl. Catal. A: Gen. 2014; 485: 196
    • 13a Li G. Jin R. Nanotechnol. Rev. 2013; 2: 529
    • 13b Wang L. Zhang W. Su DS. Meng X. Xiao F.-S. Chem. Commun. 2012; 48: 5476
    • 13c Zheng J. Lin S. Zhu X. Jiang B. Yang Z. Pan Z. Chem. Commun. 2012; 48: 6235
  • 14 Zhao H. Mao G. Han H. Song J. Liu Y. Chu W. Sun Z. RSC Adv. 2016; 6: 41108
    • 15a Parshamoni S. Telangae J. Sanda S. Konar S. Chem. Asian J. 2016; 11: 540
    • 15b Raul PK. Mahanta A. Bora U. Thakur AJ. Veer V. Tetrahedron Lett. 2015; 56: 7069
    • 15c Mulla SA. R. Chavan SS. Pathan MY. Inamdar SM. Shaikh TM. Y. RSC Adv. 2015; 5: 24675
    • 16a Kariofillis SK. Cesanek LA. Kassel WS. Piro NA. Swails RJ. L. Polyhedron 2016; 114: 317
    • 16b Jin Z. Guo S.-X. Gu X.-P. Qiu L.-L. Song H.-B. Fang J.-X. Adv. Synth. Catal. 2009; 351: 1575
    • 16c Yamamoto Y. Synlett 2007; 1913
  • 17 Ostrowska S. Lorkowski J. Kubicki M. Pietraszuk C. ChemCatChem 2016; 8: 3580
  • 18 Organ MG. Chass GA. Fang D.-C. Hopkinson AC. Valente C. Synthesis 2008; 2776
    • 19a Jensen DR. Sigman MS. Org. Lett. 2003; 5: 63
    • 19b Navarro O. Kaur H. Mahjoor P. Nolan SP. J. Org. Chem. 2004; 69: 3173
    • 19c Marion N. Navarro O. Mei J. Stevens ED. Scott NM. Nolan SP. J. Am. Chem. Soc. 2006; 128: 4101
  • 20 Diebolt O. Braunstein P. Nolan SP. Cazin CS. J. Chem. Commun. 2008; 3190
  • 21 The use of palladium complex concentrations of down to 0.00001 mol% in the coupling of phenylboronic acid was described in the literature (see ref. 8a), but the possibility of using such low pre-catalyst concentrations was not proposed in the general synthetic procedure.The reaction flask (10 mL) equipped with stirring bar was charged with 4-tolylboronic acid (124 mg, 0.91 × 10-3 mol), ethanol (96%) (2 mL), [{Pd(µ-OH)Cl(IPr)}2] (1) (5 mL, 4.55 × 10-9 mol). (Complex was added as a solution of 0.01 g of 1 in 10 mL of CH2Cl2. The solution should be stored in the dark, no longer than 3 days). The mixture was stirred in air under reflux for 6 h. After completion of the reaction, the solvent was evaporated, the residue was dissolved in hexane (5 mL) and extracted with water (2 × 2 mL). The organic layer was dried over magnesium sulphate, and hexane was evaporated under reduced pressure. 159 mg of 4,4'-dimethylbiphenyl was obtained as a white solid. Yield = 94%. 1H NMR (300 MHz, CDCl3, ppm) δ: 7.50 (d, J = 8.1 Hz, 4H), 7.25 (d, J = 8.1 Hz, 4H), 2.41 (s, 6H); 13C NMR: (75 MHz, CDCl3, ppm) d: 138.3, 136.7, 129.4, 126.8, 21.1. MS (EI) m/z (%) = 182 (M+, 100), 167 (54), 152 (15).
  • 22 Lee SJ. Gray KC. Paek JS. Burke MD. J. Am. Chem. Soc. 2008; 130: 466
  • 23 Knapp DM. Gillis EP. Burke MD. J. Am. Chem. Soc. 2009; 131: 6961
  • 24 Adamo C. Amatore C. Ciofini I. Jutand A. Lakmini H. J. Am. Chem. Soc. 2006; 128: 6829
    • 25a Cai X. Majumdar S. George C. Fortman GC. Cazin CS. J. Slawin AM. Z. Lhermitte C. Prabhakar R. Germain ME. Palluccio T. Steven P. Nolan SP. Rybak-Akimova EV. Temprado M. Captain B. Hoff CD. J. Am. Chem. Soc. 2011; 133: 1290
    • 25b Fantasia S. Nolan SP. Chem. Eur. J. 2008; 14: 6987
    • 25c Yamashita M. Goto K. Kawashima T. J. Am. Chem. Soc. 2005; 127: 7294
    • 25d Konnick MM. Guzei IA. Stahl SS. J. Am. Chem. Soc. 2004; 126: 10212
    • 26a Thomas AA. Denmark SE. Science 2016; 352: 329
    • 26b Thomas AA. Wang H. Zahrt AF. Denmark SE. J. Am. Chem. Soc. 2017; 139: 3805