Synthesis 2018; 50(08): 1651-1660
DOI: 10.1055/s-0036-1591903
paper
© Georg Thieme Verlag Stuttgart · New York

Synthesis of γ-Amino Esters by Copper-Catalyzed Intermolecular 1,2-Aminoalkylation of Alkenes with Amines and α-Bromoalkyl Esters

Gao-Hui Pan
Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, P. R. of China   Email: srj0731@hnu.edu.cn   Email: jhli@hnu.edu.cn
,
Ren-Jie Song*
Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, P. R. of China   Email: srj0731@hnu.edu.cn   Email: jhli@hnu.edu.cn
,
Ye-Xiang Xie
Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, P. R. of China   Email: srj0731@hnu.edu.cn   Email: jhli@hnu.edu.cn
,
Shenglian Luo
Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, P. R. of China   Email: srj0731@hnu.edu.cn   Email: jhli@hnu.edu.cn
,
Jin-Heng Li*
Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, P. R. of China   Email: srj0731@hnu.edu.cn   Email: jhli@hnu.edu.cn
› Author Affiliations
We thank the Natural Science Foundation of China (Nos. 21472039, 21625203 and 21402046), the Jiangxi Province Science and Technology Project (Nos. 20171BCB23055, 20171ACB21032, 20171ACB20015 and 20165BCB18007), and Technology Project of Jiangxi Provincial Department of Education (GJJ160725) for financial support.
Further Information

Publication History

Received: 17 November 2017

Accepted after revision: 03 January 2018

Publication Date:
24 January 2018 (online)


Abstract

A new copper-catalyzed intermolecular 1,2-aminoalkylation of alkenes with α-bromoalkyl esters and amines for the synthesis of γ-amino esters is described. Employing the Cu(OTf)2 and 2,2′-bipyridine catalytic system, the three-component reaction allows the formation of two new chemical bonds, including one C–C bond and one C–N bond, in a single reaction, and represents a new alkene difunctionalization using a radical strategy.

Supporting Information

 
  • References


    • For selected reviews and papers, see:
    • 1a Jurczak J. Golebiowski A. Chem. Rev. 1989; 89: 149
    • 1b Bowery NG. Hill DR. Hudson AL. Doble A. Middemiss ND. Shaw J. Turnbull M. Nature 1980; 283: 92
    • 1c Amorín M. Castedo L. Granja JR. J. Am. Chem. Soc. 2003; 125: 2844
    • 1d Woll MG. Lai JR. Guzei IA. Taylor SJ. C. Smith ME. B. Gellman SH. J. Am. Chem. Soc. 2001; 123: 11077
    • 1e Silverman RB. Andruszkiewicz R. Nanavati SM. Taylor CP. Vartanian MG. J. Med. Chem. 1991; 34: 2295
    • 1f Brea RJ. Amorín M. Castedo L. Granja JR. Angew. Chem. Int. Ed. 2005; 44: 5710
    • 1g Farrera-Sinfreu J. Giralt E. Castel S. Albericio F. Royo M. J. Am. Chem. Soc. 2005; 127: 9459
    • 1h Amorín M. Castedo L. Granja JR. Chem. Eur. J. 2005; 11: 6543
    • 1i Baldauf C. Günther R. Hofmann H.-J. J. Org. Chem. 2006; 71: 1200
    • 1j Bregman H. Chakka N. Guzman-Perez A. Gunaydin H. Gu Y. Huang X. Berry V. Liu J. Teffera Y. Huang L. Egge B. Mullady EL. Schneider S. Andrews PS. Mishra A. Newcomb J. Serafino R. Strathdee CA. Turci SM. Wilson C. DiMauro EF. J. Med. Chem. 2013; 56: 4320
    • 2a Pedersen TM. Hansen EL. Kane J. Rein T. Helquist P. Norrby P.-O. Tanner D. J. Am. Chem. Soc. 2001; 123: 9738
    • 2b Kohler F. Gais H.-J. Raabe G. Org. Lett. 2007; 9: 1231
    • 2c Zhang M. Watanabe K. Tsukamoto M. Shibuya R. Morimoto H. Ohshima T. Chem. Eur. J. 2015; 21: 3937
    • 2d Lee JH. Lee S.-G. Chem. Sci. 2013; 4: 2922
    • 3a Srikanth G. Ramakrishna KV. S. Sharma GV. M. Org. Lett. 2015; 17: 4576
    • 3b Kondoh A. Kamata Y. Terada M. Org. Lett. 2017; 19: 1682
    • 4a Mai DN. Wolfe JP. J. Am. Chem. Soc. 2010; 132: 12157
    • 4b Weidner K. Giroult A. Panchaud P. Renaud P. J. Am. Chem. Soc. 2010; 132: 17511
    • 4c Faulkner A. Scott JS. Bower JF. J. Am. Chem. Soc. 2015; 137: 7224
    • 4d Cheng J. Qi X. Li M. Chen P. Liu G. J. Am. Chem. Soc. 2015; 137: 2480
  • 5 Piou T. Rovis T. Nature 2015; 527: 86
  • 6 Liu Y.-Y. Yang X.-H. Song R.-J. Luo S. Li J.-H. Nat. Commun. 2017; 8: 14720
    • 7a Wei X.-J. Yang D.-T. Wang L. Song T. Wu L.-Z. Liu Q. Org. Lett. 2013; 15: 6054
    • 7b Yi H. Zhang X. Qin C. Liao Z. Liu J. Lei A. Adv. Synth. Catal. 2014; 356: 2873
    • 7c Fan J.-H. Wei W.-T. Zhou M.-B. Song R.-J. Li J.-H. Angew. Chem. Int. Ed. 2014; 53: 6650
    • 7d Wang Q. Huang J. Zhou L. Adv. Synth. Catal. 2015; 357: 2479
    • 7e Li Y. Liu B. Ouyang X.-H. Song R.-J. Li J.-H. Org. Chem. Front. 2015; 2: 1457
    • 7f Fan J.-H. Yang J. Song R.-J. Li J.-H. Org. Lett. 2015; 17: 836
    • 7g Li Y. Liu B. Song R.-J. Wang Q.-A. Li J.-H. Adv. Synth. Catal. 2016; 358: 1219
    • 7h Hu M. Song R.-J. Ouyang X.-H. Tan F.-L. Wei W.-T. Li J.-H. Chem. Commun. 2016; 52: 3328
    • 8a Han C. Lee JP. Lobkovsky E. Porco JA. Jr. J. Am. Chem. Soc. 2005; 127: 10039
    • 8b Allen CL. Williams JM. J. Chem. Soc. Rev. 2011; 40: 3405
    • 8c Morimoto H. Fujiwara R. Shimizu Y. Morisaki K. Ohshima T. Org. Lett. 2014; 16: 2018
    • 8d Tsuji H. Yamamoto H. J. Am. Chem. Soc. 2016; 138: 14218
    • 8e Ding R. Huang Z.-D. Liu Z.-L. Wang T.-X. Xu Y.-H. Loh T.-P. Chem. Commun. 2016; 52: 5617
    • 8f Millet A. Lefebvre Q. Rueping M. Chem. Eur. J. 2016; 22: 13464
    • 8g Gockel SN. Buchanan TL. Hull KL. J. Am. Chem. Soc. 2018; 140: 58