Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2018; 50(09): 1875-1882
DOI: 10.1055/s-0037-1609318
DOI: 10.1055/s-0037-1609318
paper
PIFA-Mediated Oxidative Cyclization Reactions of α-Acyl Acrylamides: A Synthetic Route to Substituted Isoxazol-3(2H)-ones
Financial support of this research by the National Natural Science Foundation of China (21502185 and 21542006) is greatly acknowledged.
Further Information
Publication History
Received: 04 December 2017
Accepted after revision: 16 January 2018
Publication Date:
21 February 2018 (online)

Abstract
An intramolecular cyclization of various α-acyl β-amino acrylamides in the presence of PIFA and TFA is described. This transformation features mild reaction conditions, simple execution, high chemoselectivity, and metal catalyst-free oxidation, and thereby, provides not only an alternative protocol for the construction of N–O bond, but also an efficient and straightforward synthesis of substituted isoxazol-3(2H)-ones from readily available α-acyl acrylamides.
Key words
acrylamides - cyclization - heterocycles - hypervalent iodine reagents - N–O bond formation - isoxazol-3(2H)-onesSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1609318.
- Supporting Information
-
References
- 1a Deng BL. Hartman TL. Buckheit RW. Jr. Pannecouque C. De Clercq E. Fanwick PE. Cushman M. J. Med. Chem. 2005; 48: 6140
- 1b Deng B.-L. Hartman TL. Buckheit RW. Jr. Pannecouque C. De Clercq E. Cushman M. J. Med. Chem. 2006; 49: 5316
- 1c Dhanya R.-P. Sidique S. Sheffler DJ. Nickols HH. Herath A. Yang L. Dahl R. Ardecky R. Semenova S. Markou A. Conn PJ. Cosford ND. P. J. Med. Chem. 2011; 54: 342
- 2a Jensen AA. Plath N. Pedersen MH. F. Isberg V. Krall J. Wellendorph P. Stensbol TB. Gloriam DE. Krogsgaard-Larsen P. Frolund B. J. Med. Chem. 2013; 56: 1211
- 2b Cheng L. Pettersen D. Ohlsson B. Schell P. Karle M. Evertsson E. Pahlén S. Jonforsen M. Plowright AT. Boström J. Fex T. Thelin A. Hilgendorf C. Xue Y. Wahlund G. Lindberg W. Larsson L.-O. Gustafsson D. ACS Med. Chem. Lett. 2014; 5: 538
- 3a Yamazaki Y., Tomita K.; Jpn. Kokai Tokkyo Koho 49107845; 1974
- 3b Nakamura K. Nakamura S. Eur. Patent Application 220746, 1987
- 3c Pajouhesh H. Hosseini-Meresht M. Pajouhesh SH. Curry K. Tetrahedron: Asymmetry 2000; 11: 4955
- 3d Cullen MD. Deng B.-L. Hartman TL. Watson KM. Buckheit RW. Jr. Pannecouque C. De Clercq E. Cushman M. J. Med. Chem. 2007; 50: 4854
- 3e Cullen MD. Sarkar T. Hamel E. Hartman TL. Watson KM. Buckheit RW. Jr. Pannecouque C. De Clercqd E. Cushman M. Bioorg. Med. Chem. Lett. 2008; 18: 469
- 4a Sugai S. Sato K. Ueda T. Kataoka K. Tomita K. Heterocycles 1983; 20: 1123
- 4b Noriaki K. Takamitsu Y. Kazuo S. Toyokuni H. Soji S. Chem. Pharm. Bull. 2000; 48: 509
- 4c Flores AF. C. Zanatta N. Rosa A. Brondani S. Martins MA. P. Tetrahedron Lett. 2002; 43: 5005
- 4d Clark AJ. Patel D. Broadhurst MJ. Tetrahedron Lett. 2003; 44: 7763
- 5 Han R. Qi J. Gu J. Ma D. Xie X. She X. ACS Catal. 2013; 3: 2705
- 6 Yu M. Zhang Q. Li G. Yuan J. Zhang N. Zhang R. Liang Y. Dong D. Adv. Synth. Catal. 2016; 358: 410
- 7 Liu W. Zhou P. Chen C. Zhang Q. Zhu Z. Org. Biomol. Chem. 2013; 11: 542
- 8a Zhdankin VV. Stang PJ. Chem. Rev. 2002; 102: 2523
- 8b Stang PJ. J. Org. Chem. 2003; 68: 2997
- 8c Richardson RD. Wirth T. Angew. Chem. Int. Ed. 2006; 45: 4402
- 8d Silva LF. Jr. Olofsson B. Nat. Prod. Rep. 2011; 28: 1722
- 8e Duschek A. Kirsch SF. Angew. Chem. Int. Ed. 2011; 50: 1524
- 8f Louillat ML. Patureau FW. Chem. Soc. Rev. 2014; 43: 901
- 8g Yoshimura A. Zhdankin VV. Chem. Rev. 2016; 116: 3328
- 9a Kita Y. Takada T. Gyoten M. Tohma H. Zenk MH. Eichhorn J. J. Org. Chem. 1996; 61: 5857
- 9b Wardrop DJ. Basak A. Org. Lett. 2001; 3: 1053
- 9c Du Y. Liu R. Linn G. Zhao K. Org. Lett. 2006; 8: 5919
- 9d Uyanik M. Ishihara K. Chem. Commun. 2009; 2086
- 9e Sun Y. Fan R. Chem. Commun. 2010; 46: 6834
- 9f Wei H.-L. Piou T. Dufour J. Neuville L. Zhu J. Org. Lett. 2011; 13: 2244
- 9g Dohi T. Takenaga N. Nakae T. Toyoda Y. Yamasaki M. Shiro M. Fujioka H. Maruyama A. Kita Y. J. Am. Chem. Soc. 2013; 135: 4558
- 9h Yoshimura A. Nguyen KC. Klasen SC. Saito A. Nemykin VN. Zhdankin VV. Chem. Commun. 2015; 51: 7835
- 9i Izquierdo S. Essafi S. Del Rosal I. Vidossich P. Pleixats R. Vallribera A. Ujaque G. Lledos A. Shafir A. J. Am. Chem. Soc. 2016; 138: 12747
- 9j Zhang B. Zhang X. Hu B. Sun D. Wang S. Zhang-Negrerie D. Du Y. Org. Lett. 2017; 19: 902
- 10 Kikugawa Y. Kawase M. Chem. Lett. 1990; 581
- 11a Wardrop DJ. Zhang W. Org. Lett. 2001; 3: 2353
- 11b Itoh N. Sakamoto T. Miyazawa E. Kikugawa Y. J. Org. Chem. 2002; 67: 7424
- 11c Kikugawa Y. Nagashima A. Sakamoto T. Miyazawa E. Shiiya M. J. Org. Chem. 2003; 68: 6739
- 12a Serna S. Tellitu I. Dominguez E. Moreno I. SanMartin R. Org. Lett. 2005; 7: 3073
- 12b Correa A. Tellitu I. Dominguez E. SanMartin R. J. Org. Chem. 2006; 71: 8316
- 13a Correa A. Tellitu I. Dominguez E. SanMartin R. J. Org. Chem. 2006; 71: 3501
- 13b Correa A. Tellitu I. Dominguez E. SanMartin R. Org. Lett. 2006; 8: 4811
- 14 Huang J. Liang Y. Pan W. Yang Y. Dong D. Org. Lett. 2007; 9: 5345
- 15 Huang P. Fu X. Liang Y. Zhang R. Dong D. Aust. J. Chem. 2012; 65: 121
- 16 Huang J. Lu Y. Qiu B. Liang Y. Li N. Dong D. Synthesis 2007; 2791
- 17 Liu X. Xin X. Xiang D. Liang Y. Xin X. Li W. Dong D. RSC Adv. 2013; 3: 1346
- 18 Yuan J. Zhang Q. Yu M. Huang P. Zhang R. Dong D. Org. Lett. 2015; 17: 5012
- 19 Wang K. Fu X. Liu J. Liang Y. Dong D. Org. Lett. 2009; 11: 1015
- 20a Zhang R. Zhang D. Guo Y. Zhou G. Jiang Z. Dong D. J. Org. Chem. 2008; 73: 9504
- 20b Zhang R. Zhang D. Liang Y. Zhou G. Dong D. J. Org. Chem. 2011; 76: 2880
- 21a Romero AG. Darlington WH. McMillan MW. J. Org. Chem. 1997; 62: 6582
- 21b Correa A. Tellitu I. Dominguez E. Moreno I. SanMartin R. J. Org. Chem. 2005; 70: 2256
- 21c Cho SH. Yoon J. Chang S. J. Am. Chem. Soc. 2011; 133: 5996
- 22a Samanta R. Lategahn J. Antonchick AP. Chem. Commun. 2012; 48: 3194
- 22b Mao L. Li Y. Xiong T. Sun K. Zhang Q. J. Org. Chem. 2013; 78: 733
- 22c Manna S. Antonchick AP. Angew. Chem. Int. Ed. 2014; 53: 7324
- 23a Tellitu I. Urrejola A. Serna S. Moreno I. Herresa MT. Dominguez E. SanMartin R. Correa A. Eur. J. Org. Chem. 2007; 437
- 23b Nguyen TH. L. Gigant N. Delarue-Cochin S. Joseph D. J. Org. Chem. 2016; 81: 1850
- 24a Seth K. Nautiyal M. Purohit P. Parikh N. Chakraborti AK. Chem. Commun. 2015; 51: 191
- 24b Kim SH. Lee HS. Kim SH. Kim JN. Tetrahedron Lett. 2008; 49: 5863
- 24c Zhang Y.-H. Yu J.-Q. J. Am. Chem. Soc. 2009; 131: 14654
- 24d Xu R. Wan J.-P. Mao H. Pan Y. J. Am. Chem. Soc. 2010; 132: 15531
- 24e Yan Y. Feng P. Zheng Q.-Z. Liang Y.-F. Lu J.-F. Cui Y. Jiao N. Angew. Chem. Int. Ed. 2013; 52: 5827
- 25a Pialat A. Liegault B. Taillefer M. Org. Lett. 2013; 15: 1764
- 25b Maiti S. Achar TK. Mal P. Org. Lett. 2017; 19: 2006
- 26 CCDC 1560080 (2e) contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures
For reviews, see:
For the aryl hydroxylation mediated by hypervalent iodine reagents, see ref 11b and:
For the aryl hydroxylation catalyzed by transition metals, see: