Synlett 2018; 29(14): 1847-1850
DOI: 10.1055/s-0037-1609573
letter
© Georg Thieme Verlag Stuttgart · New York

Transition-Metal-Free Efficient Synthesis of Bisindole Sulfanes Using 2-(Fluorosulfonyl)difluoroacetic Acid

Yang Li  *
a   School of Environmental and Chemical Engineering, Xi’an Polytechnic University, Xi'an 710048, P. R. of China   Email: liyang@xpu.edu.cn
,
Lan-Ting Shi
a   School of Environmental and Chemical Engineering, Xi’an Polytechnic University, Xi'an 710048, P. R. of China   Email: liyang@xpu.edu.cn
,
Wen-Qing Zhu
a   School of Environmental and Chemical Engineering, Xi’an Polytechnic University, Xi'an 710048, P. R. of China   Email: liyang@xpu.edu.cn
,
Hong Li
a   School of Environmental and Chemical Engineering, Xi’an Polytechnic University, Xi'an 710048, P. R. of China   Email: liyang@xpu.edu.cn
,
Qiang Zhang
b   School of Chemistry and Environmental Science, Shaanxi University of Technology, Shaanxi Key Laboratory of Catalysis, Hanzhong 723001, P. R. of China
› Author Affiliations
We are grateful for the financial support by the National Natural ­Science Foundation of China (21503610, 21502109), The Natural ­Science Foundation of Shaanxi Province (No. 2017JQ2017), Key ­Research & Development Project of Shaanxi Province (2017ZDXM-GY-040), and the Doctoral Scientific Research Foundation of Xi’an Polytechnic University (107020336).
Further Information

Publication History

Received: 21 March 2018

Accepted after revision: 13 June 2018

Publication Date:
20 July 2018 (online)


Abstract

By using 2-(fluorosulfonyl)difluoroacetic acid as sulfur ­reagent, bisindole sulfanes were highly efficient synthesized under transition-metal-free conditions. Results indicate that this proceeded not at the relatively acidic C-2 position but rather selectively at the nucleo­philic C-3 position to give the desired compounds with excellent regio­selectivities and good yields.

Supporting Information

 
  • References and Notes

    • 1a Davis BG. Chem. Rev. 2002; 102: 579
    • 1b Davis BG. Science 2004; 303: 480
    • 1c Jacob C. Nat. Prod. Rep. 2006; 23: 851
    • 1d Jiang CW. Müller EG. Schröder HC. Guo Y. Chem. Rev. 2012; 112: 2179
  • 2 Mishra A. Bäuerle P. Angew. Chem., Int. Ed. 2012; 51: 2020
    • 3a Murphy AR. Fréchet JM. J. Chem. Rev. 2007; 107: 1066
    • 3b Wang C. Dong H. Hu W. Liu Y. Zhu D. Chem. Rev. 2012; 112: 2208
  • 4 Anthony JE. Chem. Rev. 2006; 106: 5028
  • 5 Hung TQ. Dang TT. Villinger A. Sung TV. Langer P. Org. Boimol. Chem. 2012; 10: 9041
    • 6a Cheng Y.-J. Yang S.-H. Hsu C.-S. Chem. Rev. 2009; 109: 5868
    • 6b Brabec CJ. Heeney M. McCulloch I. Nelson J. Chem. Soc. Rev. 2011; 40: 1185
  • 7 Cinar ME. Ozturk T. Chem. Rev. 2015; 115: 3036
  • 8 Mishra A. Ma CQ. Bäuerle P. Chem. Rev. 2009; 109: 1141
  • 9 Williams TM. Ciccarone TM. MacTough SC. Rooney CS. Balani SK. Condra JH. Emini EA. Goldman ME. Greenlee WJ. Kauffman LR. O’Brien JA. Sardana VV. Schleif WA. Theoharides AD. Anderson PS. J. Med. Chem. 1993; 36: 1291

    • Representative examples:
    • 10a Raban M. Chern L. J. Org. Chem. 1980; 45: 1688
    • 10b Ranken PF. McKinnie BG. J. Org. Chem. 1989; 54: 2985
    • 10c Browder CC. Mitchell MO. Smith RL. el-Sulayman G. Tetrahedron Lett. 1993; 34: 6245
    • 10d Schlosser KM. Krasutsky AP. Hamilton HW. Reed JE. Sexton K. Org. Lett. 2004; 6: 819
    • 10e Tudge M. Tamiya M. Savarin C. Humphrey G. Org. Lett. 2006; 8: 565
    • 10f Silveira CC. Mendes SR. Wolf L. Martins GM. Tetrahedron Lett. 2010; 51: 2014
    • 10g Matsugi M. Murata K. Gotanda K. Nambu H. Anilkumar G. Matsumoto K. Kita Y. J. Org. Chem. 2001; 66: 2434
    • 10h Guo YJ. Tang RY. Li J. Zhong HP. Zhang XG. Adv. Synth. Catal. 2009; 351: 2615
    • 10i Chen Y. Cho CH. Larock RC. Org. Lett. 2009; 11: 173
    • 10j Montevecchi PC. Navacchia ML. Spagnolo P. Eur. J. Org. Chem. 1998; 6: 1219
    • 10k Barraja P. Diana P. Carbone A. Cirrincione G. Tetrahedron 2008; 64: 11625
    • 10l Sanz R. Guilarte V. Castroviejo MP. Synlett 2008; 3006
    • 10m Yadav JS. Reddy BV. S. Reddy YJ. Tetrahedron Lett. 2007; 48: 7034
    • 10n Yadav JS. Reddy BS. Reddy YJ. Praneeth K. Synthesis 2009; 1520
    • 10o Nowrouzi NG. N. Abbasi M. Mephranpour AM. New J. Chem. 2017; 41: 11921
    • 10p Yi S. Li M. Mo W. Hu X. Hu B. Sun N. Jin L. Shen Z. Tetrahedron Lett. 2016; 57: 1912
    • 10q Rahaman R. Devi N. Bhagawati JR. Barman P. RSC Adv. 2016; 6: 18929
    • 10r Qi H. Zhang T. Wan K. Luo M. J. Org. Chem. 2016; 81: 4262
    • 10s Saima Equbal D. Lavekar AG. Sinha AK. Org. Biomol. Chem. 2016; 14: 6111
    • 10t Li J. Cai Z.-J. Wang S.-Y. Ji S.-J. Org. Biomol. Chem. 2016; 14: 9384
    • 10u Yang Y. Zhang S. Tang L. Hu Y. Zha Z. Wang Z. Green Chem. 2016; 18: 2609
    • 10v Yang Y. Li W. Ying B. Liao H. Shen C. Zhang P. ChemCatChem. 2016; 8: 2916
    • 10w Shirani H. Stensland B. Begman J. Janosik T. Synlett 2006; 2459
    • 10x Shirani H. Janosik T. Synthesis 2007; 2690
  • 11 Silveira CC. Mendes SR. R. Victoria FN. Martinez DM. Savegnago L. Tetrahedron Lett. 2013; 54: 4926
  • 12 Shibahara F. Kanai T. Yamaguchi E. Kamei A. Yamauchi T. Murai T. Chem. Asian J. 2014; 9: 237
    • 13a Chen Q.-Y. J. Fluorine Chem. 1995; 72: 241
    • 13b Zhang C.-P. Chen Q.-Y. Guo Y. Xiao J.-C. Gu Y.-C. Coord. Chem. Rew. 2014; 261: 28
    • 13c Clarke SL. McGlacken GP. Chem. Eur. J. 2017; 23: 1219
    • 13d Liu Y. Wu H. Guo Y. Xiao J.-C. Chen Q.-Y. Liu C. Angew. Chem. Int. Ed. 2017; 56: 15432
  • 14 Cai X. Wu K. Dolbier WR. Jr. J. Fluorine Chem. 2005; 126: 479
    • 15a Eusterwiemann S. Martinez H. Dolbier WR. Jr. J. Org. Chem. 2012; 77: 5461
    • 15b Levchenko K. Datsenko O. Serhiichuk PO. Tolmachev A. Iaroshenko VO. Mykhailiuk PK. J. Org. Chem. 2016; 81: 5803
    • 16a Chen Q.-Y. Wu S.-W. J. Chem. Soc. Chem. Commun. 1989; 705
    • 16b Terjeson R. Mohtasham JJ. Peyton DH. Gard GL. J. Fluorine Chem. 1989; 42: 187
    • 16c Mohtasham J. Gard GL. Coord. Chem. Rev. 1992; 112: 47
    • 16d Dolbier WJr. Tian RF. Duan J.-X. Li A.-R. Ait-Mohand S. Bautista O. Buathong S. Marshall Baker J. Crawford J. Anselme P. Cai XH. Modzelewska A. Koroniak H. Battiste MA. Chen Q.-Y. J. Fluorine Chem. 2004; 125: 459
    • 16e Zhao G. Wu H. Xiao Z. Chen Q.-Y. Liu C. RSC Adv. 2016; 6: 50250
  • 17 Chen Q.-Y. Duan J.-X. J. Chem. Soc., Chem. Commun. 1993; 918
  • 18 Chen Z. Xiong W. Jiang B. Chem. Commun. 2002; 2098
    • 19a Pu F. Li Y. Song Y.-H. Xiao J. Liu Z.-W. Wang C. Liu Z.-T. Chen J.-G. Lu J. Adv. Synth. Catal. 2016; 358: 539
    • 19b Li Y. Xue D. Lu W. Fan X. Wang C. Xiao J. RSC Adv. 2013; 3: 11463
  • 20 General Procedure for the Synthesis of 3i The reaction was carried out in an autoclave containing a 35 mL Teflon reaction tube. 1-Methyl-1H-indole-5-carbonitrile (156 mg, 1.0 mmol), NaHCO3 (168 mg, 2.0 mmol), DMF (2.0 mL), and a magnetic stir bar were placed in the tube, which was then stirred under air. Then, 2-(fluorosulfonyl)difluoroacetic acid (356 mg, 2.0 mmol) was added to the tube one pot. The reaction temperature rose from 25 °C to 110 °C in 10 s and some of gas emitted. After the addition, the reaction tube was then cooled down to r.t., water (40 mL) was added, and the product was extracted with DCM (3 × 15 mL). The organic layers were washed with brine, dried over Na2SO4, and evaporated the organic solvent by rotatory evaporator under atmospheric pressure. The crude product was purified by column chromato­graphy (silica gel, petroleum ether/ethyl acetate as eluent). Compound 3i: Colorless oil (103 mg, 60%). Rf = 0.2 (petroleum ether/ethyl acetate = 4:1). 1H NMR (500 MHz, DMSO-d 6): δ = 8.23 (s, 2 H), 8.03 (s, 2 H), 7.63 (d, 2 H, J = 8.5 Hz), 7.53 (d, 2 H, J = 8.5 Hz), 3.81 (s, 6 H). 13C NMR (125 MHz, DMSO-d 6): δ = 138.9, 137.4, 128.9, 125.1, 124.4, 120.8, 112.4, 105.5, 102.6, 33.4. IR (KBr): 3057, 2915, 2245, 1750, 1636, 1311, 1114, 1058, 774, 739 cm–1. HRMS (ESI): m/z calcd for [M + H+]: 343.1017; found: 343.1015.
  • 21 Chen Q.-Y. Wu S.-W. J. Fluorine Chem. 1989; 44: 433
    • 22a Ding T. Jiang L. Yi W. Org. Lett. 2018; 20: 170
    • 22b Xiong H.-Y. Bayle A. Pannecoucke X. Besset T. Angew. Chem. Int. Ed. 2016; 55: 13490