Synlett 2018; 29(18): 2396-2403
DOI: 10.1055/s-0037-1609948
letter
© Georg Thieme Verlag Stuttgart · New York

Visible-Light-Mediated ipso-Carbosulfonylation of Alkynes: Synthesis of 3-Sulfonylspiro[4,5]trienones from Propiolamides and Sulfonyl Chlorides under Transition-Metal-Free Conditions

Yu Liu*
,
Qiao-Lin Wang
,
Bi-Quan Xiong
,
Pan-Liang Zhang
,
Chang-An Yang
,
Yan-Xia Gong
,
Jing Liao
,
Quan Zhou*
Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, P. R. of China   Email: lyxtmj_613@163.com   Email: mmzhq1985@126.com
› Author Affiliations
We thank the Scientific Research Fund of Education Department of Hunan Provincial (No. 16A087), Natural Science Foundation of Hunan Province (No. 2018JJ3208 ) and National Natural Science Foundation of China (No. 21602056) for financial support.
Further Information

Publication History

Received: 01 August 2018

Accepted after revision: 15 August 2018

Publication Date:
07 September 2018 (online)


Abstract

An efficient and convenient strategy to synthesize diverse 3-sulfonylspiro[4,5]trienones has been developed. This ipso-carbosulfonylation of alkynes proceeds by visible-light catalysis under transition-metal-free conditions and represents a new sulfonylation and ipso-cyclization of alkynes. In this transformation, the O atom in the newly generated carbonyl is derived from H2O and it features a broad substrates scope, especially for alkyl propiolamides and aliphatic sulfonyl chlorides.

Supporting Information

 
  • References

    • 1a Heathcock CH. Graham SL. Pirrung MC. Plavac F. White CT. The Total Synthesis of Natural Products . Vol. 5. Apsimon J. Wiley-Interscience; New York: 1983: 1
    • 1b Yoneda K. Yamagata E. Nakanishi T. Nagashima T. Kawasaki I. Yoshida T. Mori H. Miura I. Phytochemistry 1984; 23: 2068
    • 1c Cai Y-S. Guo Y-W. Krohn K. Nat. Prod. Rep. 2010; 27: 1840
    • 1d Wu W-T. Zhang L. You S-L. Chem. Soc. Rev. 2016; 45: 1570
    • 1e Ramon R. Chem. Soc. Rev. 2012; 41: 1060
    • 1f Yang Y-L. Chang F-R. Wu YC. Helv. Chim. Acta. 2004; 87: 1392
    • 1g Jin Z. Nat. Prod. Rep. 2005; 22: 111
    • 1h D’yakonov V-A. Trapeznikova O-A. Meijere A-D. Dzhemilev U-M. Chem. Rev. 2014; 114: 5775
    • 2a Roche S-T. Porco JrJ-A. Angew. Chem. Int. Ed. 2011; 50: 4068
    • 2b Jia M-Q. You S-L. Chem. Commun. 2012; 48: 6363
    • 2c Leon R. Jawalekar A. Redert T. Gaunt MJ. Chem. Sci. 2011; 2: 1487
    • 2d Zhou C-X. Zhang W. You S-L. Angew. Chem. Int. Ed. 2012; 51: 12662
    • 2e Kotha S. Deb A-C. Lahiri K. Manivannan E. Synthesis 2009; 165
    • 2f Williamson A-E. Ngouansavanh T. Pace RD. M. Allen A-E. Cuthbertson J-D. Gaunt MJ. Synlett 2016; 27: 116

      For representative papers on metal-catalyzed synthesis of spiro[4,5] trienones see:
    • 3a Pigge F-C. Coniglio J-J. Dalvi R. J. Am. Chem. Soc. 2006; 128: 3498
    • 3b Chiba S. Zhang L. Lee J-Y. J. Am. Chem. Soc. 2010; 132: 7266
    • 3c Tnay Y-L. Chen C. Chua Y-Y. Zhang L. Chiba S. Org. Lett. 2012; 14: 3550
    • 3d Nemoto T. Ishige Y. Yoshida M. Kohno Y. Kanematsu M. Hamada Y. Org. Lett. 2010; 12: 5020
    • 3e Wu Q-F. Liu W-B. Zhuo C-X. Rong Z-Q. Ye K-Y. You S-L. Angew. Chem. Int. Ed. 2011; 50: 4455
    • 3f Rousseaux S. García-Fortanet J. Sanchez MA. D. Buchwald SL. J. Am. Chem. Soc. 2011; 133: 9282
    • 3g Nemoto T. Zhao Z. Yokosaka T. Suzuki Y. Wu R. Hamada Y. Angew. Chem. Int. Ed. 2013; 52: 2217

      For papers on the oxidative spirocyclization of phenol derivatives see:
    • 4a Pouységu L. Deffieux D. Quideau S. Tetrahedron 2010; 66: 2235
    • 4b Dohi T. Kita Y. Chem. Commun. 2009; 2073
    • 4c Quideau S. Pouységu L. Deffieux D. Synlett 2008; 467
    • 4d Ciufolini M-A. Braun N-A. Canesi S. Ousmer M. Chang J. Chai D. Synthesis 2007; 3759
    • 4e Magdziak D. Meek S-J. Pettus T-R-R. Chem. Rev. 2004; 104: 1383
    • 4f Zhdankin V-V. Stang P-J. Chem. Rev. 2008; 108: 5299

      For papers on the synthesis of spiro[4,5] trienones by electrophilic ipso-cyclizations see:
    • 5a Zhang X. Larock R-C. J. Am. Chem. Soc. 2005; 127: 12230
    • 5b Tang B-X. Tang DJ. Tang S. Yu Q-F. Zhang Y-H. Liang Y. Zhong P. Li J-H. Org. Lett. 2008; 10: 1063
    • 5c Yu Q-F. Zhang Y-H. Yin Q. Tang B-X. Tang R-Y. Zhong P. Li J-H. J. Org. Chem. 2008; 73: 3658
    • 5d Wang Z-Q. Tang B-X. Zhang H-P. Wang F. Li J-H. Synthesis 2009; 891
    • 5e Tang B-X. Zhang Y-H. Song R-J. Tang DJ. Deng G-B. Wang Z-Q. Xie Y-X. Xia Y-Z. Li J-H. J. Org. Chem. 2012; 77: 2837
    • 5f Yin Q. You S-L. Org. Lett. 2012; 14: 3526

      For selected papers on spiro[4,5]decatrienones synthesis through radical ipso-carbocyclization see:
    • 6a Lanza T. Leardini R. Minozzi M. Nanni D. Spagnolo P. Zanardi G. Angew. Chem. Int. Ed. 2008; 47: 9439
    • 6b Dohi T. Maruyama A. Yoshimura M. Morimoto K. Tohma H. Kita Y. Angew. Chem. Int. Ed. 2005; 44: 6193
    • 6c Song R-J. Xie Y-X. Chin. J. Chem. 2017; 35: 280
    • 6d Wei W-T. Song R-J. Ouyang X-H. Li Y. Li H-B. Li J-H. Org. Chem. Front. 2014; 1: 484
    • 6e Ouyang X-H. Song R-J. Liu B. Li J-H. Chem. Commun. 2016; 52: 2573
    • 6f Hua H-L. He Y-T. Qiu Y-F. Li Y-X. Song B. Gao P. Song X-R. Guo DH. Liu X-Y. Liang Y-M. Chem. Eur. J. 2015; 21: 1468
    • 6g Yang X-H. Ouyang X-H. Wei W-T. Song R-J. Li J-H. Adv. Synth. Catal. 2015; 357: 1161
    • 6h Liu Y. Wang Q-L. Zhou C-S. Xiong B-Q. Zhang P-L. Yang C-A. Tang K-W. J. Org. Chem. 2018; 83: 2210
    • 6i Wei W. Cui H. Yang D. Yue H. He C. Zhang Y. Wang H. Green. Chem. 2017; 19: 5608
    • 7a Paris J-M. Barriere J-C. Smith C. Bost P-E. In Recent Progress in the Chemical Synthesis of Antibiotics . Lucas G. Ohno M. Springer-Verlag; Berlin: 1990: 183
    • 7b Giambattista MD. Chinali G. Cocito C. Antimicrob. Chemother. 1989; 24: 485
    • 7c Lauterbach C. Fabian J. Eur. J. Inorg. Chem. 1999; 1995
    • 7d Hope E-G. Levason W. Coord. Chem. Rev. 1993; 122: 109
    • 7e Clemenson P-I. Coord. Chem. Rev. 1990; 106: 171
    • 7f Baumann R-P. Ishiguro K. Penketh P-G. Shyam K. Zhu R. Sartorelli A-C. Biochem. Pharmacol. 2011; 81: 1201
    • 7g McReynolds M-D. Dougherty J-M. Hanson P-R. Chem. Rev. 2004; 104: 2239
    • 7h Sarma R. Rajesh N. Prajapati D. Chem. Commun. 2012; 48: 4014
    • 7i Chakrabarty S. Choudhary S. Doshi A. Liu F-Q. Mohan R. Ravindra P-M. Shah D. Yang X. Fleming F-F. Adv. Synth. Catal. 2014; 356: 2135
    • 7j Yang X. Fleming F-F. Acc. Chem. Res. 2017; 50: 2556
    • 7k Yang X. Nath D. Gua M-R. Steward O-W. Fleming F-F. Angew. Chem. Int. Ed. 2017; 56: 7257

      The reviews on the synthesis of sulfur-containing compounds see:
    • 8a Liu H. Jiang X.-F. Chem. Asian J. 2013; 8: 2546
    • 8b Wang Y. Li Y. Jiang X.-F. Chem. Asian J. 2018; in press: DOI: 10 1002/asia.20180053.

      For selected papers on C–C cross-coupling reactions involving desulfinylative of sulfonyl chlorides see:
    • 9a Reddy S. Vogel P. J. Am. Chem. Soc. 2003; 125: 15292
    • 9b Li X-G. Liang DQ. Huang W-Z. Zhou H-F. Li Z. Wang B-L. Ma Y-H. Wang H. Tetrahedron 2016; 72: 8442
    • 9c Dubbaka S-R. Vogel P. Adv. Synth. Catal. 2004; 346: 1793
    • 9d Jafarpour F. Olia M-B-A. Hazrati H. Adv. Synth. Catal. 2013; 355: 3407
    • 9e Zhang M-L. Zhang S-H. Liu M-C. Cheng J. Chem. Commun. 2011; 47: 11522
    • 9f Yuan K-D. Doucet H. Chem. Sci. 2014; 5: 392
    • 9g Volla C-M-R. Vogel P. Angew. Chem. Int. Ed. 2008; 47: 1305
    • 9h Merchant R-R. Edwards J-T. Qin T. Kruszyk M-M. Bi C. Che G. Bao DH. Qiao W-H. Sun LJ. Collins M-R. Fadeyi O-O. Gallego G-M. Mousseau J-J. Nuhant P. Baran P-S. Science 2018; 360: 75
    • 9i Ariki Z-T. Maekawa Y. Nambo M. Crudden C-M. J. Am. Chem. Soc. 2018; 140: 78
    • 9j Chaudhary R. Natarajan P. ChemistrySelect 2017; 2: 6458

      For representative papers on [2+2+2] cycloaddition reactions involving desulfinylative of sulfonyl chlorides see:
    • 10a Deng G-B. Wang Z-Q. Xia J-D. Qian P-C. Song R-J. Hu M. Gong LB. Li J-H. Angew. Chem. Int. Ed. 2013; 52: 1535
    • 10b Liu Y. Zhang J-L. Zhou M-B. Song R-J. Li J-H. Chem. Commun. 2014; 50: 14412

      For representative papers on difunctionalization reactions involving desulfinylative of sulfonyl chlorides see:
    • 11a Zeng X-M. Ilies L. Nakamura E. J. Am. Chem. Soc. 2011; 133: 17638
    • 11b Gu LJ. Jin C. Wang W. He Y-H. Yang G-Y. Li G-P. Chem. Commun. 2017; 53: 4203
    • 11c Xia J-D. Deng G-B. Zhou M-B. Liu W. Li J-H. Synlett 2012; 23: 2707

      For selected papers on C–S cross-coupling reactions of sulfonyl chlorides see:
    • 12a Pagire S-K. Hossain A. Resier O. Org. Lett. 2018; 20: 648
    • 12b Wu Z-Y. Song H-Y. Cui X-L. Pi C. Du W-W. Wu Y-J. Org. Lett. 2013; 15: 1270
    • 12c Sun K. Chen X-L. Li X. Qu l- l-B. Bi W-Z. Chen X. Ma H-L. Zhang S-T. Han B-W. Zhao Y-F. Li C-J. Chem. Commun. 2015; 51: 12111
    • 12d Ramesh B. Jeganmohan M. Org. Lett. 2017; 19: 6000
    • 12e Qiao H-J. Sun S-Y. Yang F. Zhu Y. Zhu W-G. Dong Y-X. Wu Y-S. Kong X-T. Jiang L. Wu Y-J. Org. Lett. 2015; 17: 6086
    • 12f Liang H-W. Jiang K. Ding W. Yuan Y. Shuai L. Chen Y-C. Wei Y. Chem. Commun. 2015; 51: 16928

      For selected papers on difunctionalization reactions of sulfonyl chlorides see:
    • 13a Zeng X-M. Llies L. Nakamura E. Org. Lett. 2014; 14: 954
    • 13b Niu T-F. Jiang DY. Ni B-Q. Tetrahedron Lett. 2017; 58: 4299
    • 13c Pagire S-K. Paria S. Reiser O. Org. Lett. 2016; 18: 2106
    • 13d Xia X-F. Zhu S-L. Wang DW. Liang Y-M. Adv. Synth. Catal. 2017; 359: 859
    • 13e Niu T-F. Cheng J. Zhou C-L. Jiang DY. Shu X-G. Ni B-Q. Tetrahedron. Lett. 2017; 58: 3667
    • 13f Gloor C-S. Denes F. Renaud P. Angew. Chem. Int. Ed. 2017; 56: 13329

      For selected papers on other cross-coupling reactions of sulfonyl chlorides see:
    • 14a Bogolubsky A-V. Moroz Y-S. Mykhailiuk P-K. Pipko S-E. Konovets A-I. Sadkova I-V. Tolmachev A. ACS Comb. Sci. 2014; 16: 192
    • 14b Cai Y-G. Zhang R-H. Sun DL. Xu S. Zhou Q-G. Synlett 2017; 28: 1630

      For reviews on visible-light photoredox catalysis see:
    • 15a Zeitler K. Angew. Chem. Int. Ed. 2009; 48: 9785
    • 15b Yoon T-P. Ischay M-A. Du J. Nat. Chem. 2010; 2: 527
    • 15c Narayanam J-M-R. Stephenson C-R-J. Chem. Soc. Rev. 2011; 40: 102
    • 15d Amgoune A. Bourissou D. Chem. Commun. 2011; 76: 859
    • 15e Tucker J-W. Stephenson C-R-J. J. Org. Chem. 2012; 77: 1617
    • 15f Ravelli D. Fagnoni M. ChemCatChem. 2012; 4: 169
    • 15g Wallentin C-J. Nguyen J-D. Stephenson C-R-J. Chimia 2012; 66: 394
    • 15h Xuan J. Xiao W-J. Angew. Chem. Int. Ed. 2012; 51: 6934
    • 15i Chen J-R. Yan DM. Wei Q. Xiao W-J. ChemPhotoChem 2017; 1: 148
    • 15j Srivastava V. Singh P-P. RSC Adv. 2017; 7: 31377
    • 16a Shi Q. Li P-H. Zhu X-J. Wang L. Green Chem. 2016; 18: 4916
    • 16b Zhang L. Yi H. Wang J. Lei A-W. Green Chem. 2016; 18: 5122
    • 16c Ghogare A-A. Greer A. Chem. Rev. 2016; 116: 9994
    • 16d Hu X. Zhang G-T. Bu F-X. Lei A-W. ACS Catal. 2017; 7: 1432
    • 16e Li X-X. Fang X-X. Zhuang S-Y. Liu P. Sun P-P. Org. Lett. 2017; 19: 3580
    • 17a Liu Y. Zhang J-L. Song R-J. Li J-H. Org. Chem. Front. 2014; 1: 1289
    • 17b Liu Y. Song R-J. Li J-H. Sci. China Chem. 2016; 59: 161
    • 17c Liu Y. Zhang J-L. Song R-J. Li J-H. Eur. J. Org. Chem. 2014; 1177
    • 17d Zhang J-L. Liu Y. Song R-J. Li J-H. Synlett 2014; 25: 1031
    • 17e Liu Y. Wang Q-L. Zhou C-S. Xiong B-Q. Zhang P-L. Yang C-A. Tang K-W. Tetrahedron Lett. 2018; 59: 2038
    • 18a Hari DP. König B. Angew. Chem. Int. Ed. 2013; 52: 4734
    • 18b Hari DP. Schroll P. König B. J. Am. Chem. Soc. 2012; 134: 2958
    • 18c Chen J-R. Hu X-Q. Lu LQ. Xiao W-J. Acc. Chem. Res. 2016; 49: 1911
    • 18d Ding W. Lu LQ. Zhou Q-Q. Wei Y. Chen J-R. Xiao W-J. J. Am. Chem. Soc. 2017; 139: 63
    • 18e Zhang M-L. Ruzi R-H-G-L. Xi J-W. Wu Z-K. Li W-P. Yu S-Y. Zhu C-J. Org. Lett. 2017; 19: 3430
    • 18f Wang H. Xu Q. Shen S. Yu S-Y. J. Org. Chem. 2017; 82: 770
  • 19 General Procedure A Schlenk tube was charged with 1 (0.2 mmol), 2 (0.3 mmol, 1.5 equiv), Eosin Y (2 mol%, 0.004 mmol), Na2CO3 (0.4 mmol, 2 equiv), H2O (0.8 mmol, 4 equiv), CH3CN (2 mL). Then, the mixture was stirred at 100 °C (oil bath temperature) under an argon atmosphere (1 atm) under 5 W blue LED light for 20 h until complete consumption of starting material was monitored by TLC and GC-MS analysis. After the reaction was finished, the reaction mixture was washed with brine. The aqueous phase was extracted with EtOAc (3×10 mL). The combined organic extracts were dried over Na2SO4 and concentrated in vacuum. The residue was purified by silica gel flash column chromatography (hexane/EtOAc 5:1 to 1:1) to afford the desired products 3 which was analyzed by 1H NMR, 13C NMR spectroscopy, and HRMS (see Supporting Information). 1-Methyl-4-phenyl-3-(phenylsulfonyl)-1-azaspiro[4.5]deca-3,6,9-triene-2,8-dione (3aa) Yellow solid (0.072 g, 92% yield). Mp 206.5−208.3 °C (uncorrected). 1H NMR (400 MHz, CDCl3): δ = 8.04 (d, J = 7.6 Hz, 2 H), 7.66 (t, J = 7.2 Hz, 1 H), 7.55 (t, J = 7.6 Hz, 2 H), 7.44 (t, J = 7.6 Hz, 1 H), 7.38 (t, J = 6.8 Hz, 2 H), 7.15 (d, J = 6.8 Hz, 2 H), 6.47−6.42 (m, 4 H), 2.83 (s, 3 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 183.0, 163.4, 162.1, 142.2, 139.1, 136.5, 134.3, 134.3, 130.3, 129.1, 129.0, 128.4, 127.9, 127.7, 68.2, 26.3 ppm. HRMS (ESI-TOF): m/z [M + K]+ calcd for C22H17KNO4S: 430.0510; found: 430.0514.