Synthesis 2018; 50(17): 3281-3306
DOI: 10.1055/s-0037-1610182
review
© Georg Thieme Verlag Stuttgart · New York

Conjugate Alkynylation of Electrophilic Double Bonds. From Regioselectivity to Enantioselectivity

Departament de Química Orgànica, Facultat de Química, Universitat de València, C/Dr. Moliner 50, 46100-Burjassot, València, Spain   Email: gonzalo.blay@uv.es   Email: josé.r.pedro@uv.es
,
Departament de Química Orgànica, Facultat de Química, Universitat de València, C/Dr. Moliner 50, 46100-Burjassot, València, Spain   Email: gonzalo.blay@uv.es   Email: josé.r.pedro@uv.es
,
Amparo Sanz-Marco
Departament de Química Orgànica, Facultat de Química, Universitat de València, C/Dr. Moliner 50, 46100-Burjassot, València, Spain   Email: gonzalo.blay@uv.es   Email: josé.r.pedro@uv.es
› Author Affiliations
Ministerio de Economía, Industria y Competitividad (Agencia Estatal de Investigación) and FEDER (Grant CTQ2017-84900-P). Generalitat Valenciana and Fondo Social Europeo (Grant APOST-2016-139).
Further Information

Publication History

Received: 29 March 2018

Accepted after revision: 04 May 2018

Publication Date:
27 July 2018 (online)


Dedicated to the memory of Professor Aede de Groot

Abstract

This review surveys the historical efforts addressed toward the development of the conjugate alkynylation reaction. The regio- and enantioselective conjugate alkynylation of electron-deficient double bonds, most commonly unsaturated carbonyl compounds, has been an elusive reaction for a long time. Intensive research during the last decades has resulted in the identification of a number of effective reagents and catalysts to perform this reaction. Non-stereoselective conjugate alkynylation of unsaturated carbonyl compounds was first achieved by using preformed alkynyl organometallics and later with terminal alkynes under catalytic conditions. These methods paved the way for the development of enantioselective procedures. After initial methods requiring stoichiometric amounts of chiral material, the findings by Corey on Ni-catalyzed addition of alkynylalanes and, particularly, by Carreira on Cu-catalyzed addition of terminal alkynes boosted the research on the development other asymmetric procedures catalyzed by Cu, Zn, Rh, Co, Ru and Pd complexes. The alkynylation of electrophilic alkenes conjugated with groups other than carbonyl and the alkynylation of extended conjugated systems are also discussed in the last part of this review.

1 Introduction

2 Non-Stereoselective Conjugate Alkynylation of α,β-Unsaturated Carbonyl Compounds

3 Enantioselective Conjugate Alkynylation of α,β-Unsaturated Carbonyl Compounds

4 Non-Stereoselective and Enantioselective Alkynylation of Other Electrophilic Alkenes

5 γ-Alkynylation of α,β-Unsaturated Amides and δ-Alkynylation of Electrophilic Dienes

6 Alternative Enantioselective Procedures

7 Conclusion and Outlook

 
  • References

    • 1a Bohlmann F. Burkhardt H. Zdero C. Naturally Occurring Acetylenes . Academic Press; New York: 1973
    • 1b Jones ER. H. Thaller V. In The Chemistry of the Carbon-Carbon Triple Bond, Part 2 . Patai S. Wiley; Chichester: 1978: 621
    • 2a Nielsen MB. Diederich F. Chem. Rev. 2005; Review: 105: 1837
    • 2b Wan WB. Brand SC. Pak JJ. Haley MM. Chem. Eur. J. 2000; 6: 2044
    • 2c West K. Wang C. Batsanov AS. Bryce MR. Org. Biomol. Chem. 2008; 6: 1934
    • 3a Hudrlik PF. Hudrlik AM. Applications of Acetylenes in Organic Synthesis. In The Chemistry of the Carbon-Carbon Triple Bond, Part 1. Patai S. Wiley; Chichester: 1978: 199
    • 3b Modern Alkyne Chemistry: Catalytic and Atom-Economic Reactions. Trost BM. Li C.-J. Wiley-VCH; Weinheim: 2015
    • 3c Fanga G. Bi X. Chem. Soc. Rev. 2015; 44: 8124
    • 3d Salvio R. Moliterno M. Bella M. Asian J. Org. Chem. 2014; 3: 340
    • 3e Trotus I.-T. Zimmermann T. Schüth F. Chem. Rev. 2014; 114: 176
    • 3f Chinchilla R. Nájera C. Chem. Rev. 2014; 114: 1783
  • 5 Blay G. Monleón A. Pedro JR. Curr. Org. Chem. 2009; 13: 1498
  • 6 Fujimori S. Knöpfel TF. Zarotti P. Ichikawa T. Boyall D. Carreira EM. Bull. Chem. Soc. Jpn. 2007; 80: 1635

    • Despite this, the 1,4-addition of simple organolithiums to enones highly hindered in the proximity of the carbonyl group such as 1,1,1-triphenyl-2-penten-1-one, as well as the conjugate alkynylation of 2-arylidene-1,3-diesters with alkynyl Grignard reagents have been reported, see:
    • 7a Locher R. Seebach D. Angew. Chem. 1981; 93: 614
    • 7b Kruse LI. Kaiser C. De Wolf WE. Jr. Chambers PA. Goodhart PJ. Ezekiel M. Ohlstein EH. J. Med. Chem. 1988; 31: 704
  • 8 Hooz J. Layton RB. J. Am. Chem. Soc. 1971; 93: 7320
    • 9a Pappo R. Collins PW. Tetrahedron Lett. 1972; 13: 2627
    • 9b Bruhn M. Brown CH. Collins PW. Palmer JR. Dayanl EZ. Pappo R. Tetrahedron Lett. 1976; 17: 235
    • 10a Hansen RT. Carr DB. Schwartz J. J. Am. Chem. Soc. 1978; 100: 2244
    • 10b Schwartz J. Carr DB. Hansen RT. Dayrit FM. J. Org. Chem. 1980; 45: 3053
  • 11 Maruoka K. Shimada I. Imoto H. Yamamoto H. Synlett 1994; 519
  • 12 Ahmar S. Fillion E. Org. Lett. 2014; 16: 5748
  • 13 Sinclair JA. Molander GA. Brown HC. J. Am. Chem. Soc. 1977; 99: 954
  • 14 Bertoline F. Woodward S. Synlett 2009; 51
  • 15 Kim S. Lee JM. Tetrahedron Lett. 1990; 31: 7627
  • 16 Kim S. Park JH. Jon SY. Bull. Korean Chem. Soc. 1995; 16: 783
  • 17 Eriksson M. Iliefski T. Nilsson M. Olsson T. J. Org. Chem. 1997; 62: 182
  • 18 Baars H. Classen MJ. Aggarwal VK. Org. Lett. 2017; 19: 6008
  • 19 Daia DE. Gabbutt CD. Heron BM. Hepworth JD. Hursthouse MB. Malik KM. A. Tetrahedron Lett. 2003; 44: 1461
  • 20 Xu Y. Pan Y. Liu P. Wang H. Tian X. Su G. J. Org. Chem. 2012; 77: 3557
  • 21 Shibata I. Kano T. Kanazawa N. Fukuoka S. Baba A. Angew. Chem. Int. Ed. 2002; 41: 1389
  • 22 Kovalev IP. Nikishin GI. Tetrahedron Lett. 1990; 31: 7063
  • 23 Lerum RV. Chisholm JD. Tetrahedron Lett. 2004; 45: 6591
  • 24 Picquet M. Bruneau C. Dixneuf PH. Tetrahedron 1999; 55: 3937
  • 25 Chang S. Na Y. Choi E. Kim S. Org. Lett. 2001; 3: 2089
    • 26a Nishimura T. Washitake Y. Nishiguchi Y. Maeda Y. Uemura S. Chem. Commun. 2004; 1312
    • 26b Nishimura T. Washitake Y. Uemura S. Adv. Synth. Catal. 2007; 349: 2563
  • 27 Ito J. Fujii K. Nishiyama H. Chem. Eur. J. 2013; 19: 601
    • 28a Chen L. Li C.-J. Chem. Commun. 2004; 2362
    • 28b Zhou L. Chen L. Skouta R. Jiang H.-F. Li C.-J. Org. Biomol. Chem. 2008; 6: 2969
  • 29 Villarino L. García-Fandiño R. López F. Mascareñas JL. Org. Lett. 2012; 14: 2996
    • 30a Knöpfel TF. Carreira EM. J. Am. Chem. Soc. 2003; 125: 6054
    • 30b Fujimori S. Carreira EM. Angew. Chem. Int. Ed. 2007; 46: 4964
  • 31 Li S. Jia W. Jiao N. Adv. Synth. Catal. 2009; 351: 569
  • 32 Rajesh N. Prajapati D. Org. Biomol. Chem. 2015; 13: 4668
  • 33 Kidway M. Jain A. Bhardwaj S. Catal. Lett. 2011; 141: 183
    • 34a Carreño MC. Pérez González M. Ribagorda M. Fischer J. J. Org. Chem. 1996; 61: 6758
    • 34b Carreño MC. Pérez González M. Ribagorda M. Houk KN. J. Org. Chem. 1998; 63: 3687
  • 35 Chong JM. Shen L. Taylor NJ. J. Am. Chem. Soc. 2000; 122: 1822
  • 36 Knöpfel TF. Boyall D. Carreira EM. Org. Lett. 2004; 13: 2281
    • 37a Cui S. Walker SD. Woo JC. S. Borths CJ. Mukherjee H. Chen MJ. Faul MM. J. Am. Chem. Soc. 2010; 132: 436
    • 37b Woo JC. S. Cui S. Walker SD. Faul MM. Tetrahedron 2010; 66: 4730
  • 38 Kwak Y.-S. Corey EJ. Org. Lett. 2004; 6: 3385
  • 39 Larionov OV. Corey EJ. Org. Lett. 2010; 12: 300
  • 40 Wu TR. Chong JM. J. Am. Chem. Soc. 2005; 127: 3244
  • 41 Pellegrinet SC. Goodman JM. J. Am. Chem. Soc. 2006; 128: 3116
  • 42 Knopfel TF. Zarotti P. Ichikawa T. Carreira EM. J. Am. Chem. Soc. 2005; 127: 9682
  • 43 Zarotti P. Knöpfel TF. Aschwanden P. Carreira EM. ACS Catal. 2012; 2: 1232
  • 44 Mishra S. Liu J. Aponick A. J. Am. Chem. Soc. 2017; 139: 3352
    • 45a Yazaki R. Kumagai N. Shibasaki M. J. Am. Chem. Soc. 2010; 132: 10275
    • 45b Yazaki R. Kumagai N. Shibasaki M. Chem. Asian. J. 2011; 6: 1778
  • 46 Yazaki R. Kumagai N. Shibasaki M. Org. Lett. 2011; 13: 952
  • 47 Sanz-Marco A. García-Ortiz A. Blay G. Fernández I. Pedro JR. Chem. Eur. J. 2014; 20: 668
    • 48a Sanz-Marco A. Blay G. Muñoz MC. Pedro JR. Chem. Commun. 2015; 51: 8958
    • 48b Sanz-Marco A. Blay G. Muñoz MC. Pedro JR. Chem. Eur. J. 2016; 22: 10057
  • 49 Sanz-Marco A. García-Ortiz A. Blay G. Pedro JR. Chem. Commun. 2014; 50: 2275
  • 50 Nishimura T. Kato T. Takatsu K. Shintani R. Hayashi T. J. Am. Chem. Soc. 2007; 129: 14158
  • 51 Nishimura T. Guo X.-X. Uchiyama N. Katoh T. Hayashi T. J. Am. Chem. Soc. 2008; 130: 1576
  • 52 Nishimura T. Sawano T. Hayashi T. Angew. Chem. Int. Ed. 2009; 48: 8057
    • 53a Mandelalide A: Brutsch TM. Bucher P. Altmann K.-H. Chem. Eur. J. 2016; 22: 1292
    • 53b Aphanamol I: Ferrara SJ. Burton JW. Chem. Eur. J. 2016; 22: 11597
  • 54 Nishimura T. Tokuji S. Sawano T. Hayashi T. Org. Lett. 2009; 11: 3222
  • 55 Dou X. Huang Y. Hayashi T. Angew. Chem. Int. Ed. 2016; 55: 1133
  • 56 Zhi Y. Huang J. Liu N. Lu T. Dou X. Org. Lett. 2017; 19: 2378
  • 57 Choo K.-L. Lautens M. Org. Lett. 2018; 20: 1380
  • 58 Fillion E. Zorzitto AK. J. Am. Chem. Soc. 2009; 131: 14608
  • 59 Nishimura T. Sawano T. Ou K. Hayashi T. Chem. Commun. 2011; 47: 10142
  • 60 Blay G. Cardona L. Pedro JR. Sanz-Marco A. Chem. Eur. J. 2012; 18: 12966
  • 61 Blay G. Muñoz MC. Pedro JR. Sanz-Marco A. Adv. Synth. Catal. 2013; 355: 1071
  • 62 Sanz-Marco A. Blay G. Vila C. Pedro JR. Org. Lett. 2016; 18: 3538
  • 63 Mechkov TsD. Sulimov IG. Usik NV. Perekalin VV. Mladenov I. Zh. Org. Khim. 1978; 14: 733
  • 64 Pecunioso A. Menicagli R. J. Org. Chem. 1989; 54: 2391
  • 65 Dhakal RC. Dieter RK. Org. Lett. 2014; 16: 1362
  • 66 Yamashita M. Yamada K.-I. Tomioka K. Org. Lett. 2005; 12: 2369
  • 67 Nishimura T. Tokuji S. Sawano T. Hayashi T. Chem. Commun. 2010; 46: 6837
    • 68a Isobe M. Hirose Y. Shimokawa K. Nishikawa T. Goto T. Tetrahedron Lett. 1990; 31: 5499
    • 68b Herunsalee A. Isobe M. Goto T. Tetrahedron 1991; 47: 3727
    • 68c Isobe M. Jiang Y. Tetrahedron Lett. 1995; 36: 567
    • 68d Jiang Y. Isobe M. Tetrahedron 1996; 52: 2877
    • 69a Liu T.-Z. Kirschbaum B. Isobe M. Synlett 2000; 587
    • 69b Baba T. Isobe M. Synlett 2003; 547
    • 69c Liu T.-Z. Isobe M. Tetrahedron 2000; 56: 5391
    • 69d Baba T. Huang G. Isobe M. Tetrahedron 2003; 59: 6851
  • 70 Tsao K.-W. Isobe M. Org. Lett. 2010; 12: 5338
  • 71 Yanai H. Egawa S. Yamada K. Ono J. Aoki M. Matsumoto T. Taguchi T. Asian J. Org. Chem. 2014; 3: 556
    • 72a Saitoh H. Ishida N. Satoh T. Tetrahedron Lett. 2010; 51: 633
    • 72b Ishida N. Saitoh H. Sugiyama S. Satoh T. Tetrahedron 2011; 67: 3081
    • 73a Skarpos H. Osipov SN. Vorob’eva DV. Odinets IL. Lork E. Röschenthaler GV. Org. Biomol. Chem. 2007; 5: 2361
    • 73b Artyushin O. Osipov SN. Röschenthaler G.-V. Odinets IL. Synthesis 2009; 3579
    • 73c Massarenti C. Bortolini O. Fantin G. Cristofaro D. Ragno D. Perrone D. Marchesi E. Toniolo G. Massi A. Org. Biomol. Chem. 2017; 15: 4907
  • 74 Nishimura T. Guo X.-X. Hayashi T. Chem. Asian J. 2008; 3: 1505
  • 75 Wang Z.-X. Bai X.-Y. Yao H.-C. Li B.-J. J. Am. Chem. Soc. 2016; 138: 14872
    • 76a Mitsudo T. Nakagawa Y. Watanabe K. Hori Y. Misawa H. Watanabe H. Watanabe Y. J. Org. Chem. 1985; 50: 565
    • 76b Mitsudo T. Hori Y. Watanabe Y. Bull. Chem. Soc. Jpn. 1986; 59: 3201
  • 77 Ahmed N. van Lier JE. Tetrahedron Lett. 2007; 48: 5723
  • 78 Sawano T. Ashouri A. Nishimura T. Hayashi T. J. Am. Chem. Soc. 2012; 134: 18936
    • 79a Trost BM. Taft BR. Masters JT. Lumb J.-P. J. Am. Chem. Soc. 2011; 133: 8502
    • 79b Trost BM. Masters JT. Taft BR. Lumb J.-P. Chem. Sci. 2016; 7: 6217
    • 80a Nielsen M. Jacobsen CB. Paixao MW. Holub N. Jørgensen KA. J. Am. Chem. Soc. 2009; 131: 10581
    • 80b Paixao MW. Holub N. Vila C. Nielsen M. Jørgensen KA. Angew. Chem. Int. Ed. 2009; 48: 7338