Synlett 2018; 29(15): 1989-1994
DOI: 10.1055/s-0037-1610228
letter
© Georg Thieme Verlag Stuttgart · New York

Efficient Preparation of Cyclic α-Alkylidene β-Oxo Imides by Using a Flow Microreactor System

Katsuhiro Komuro
a   Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan   Email: mnakada@waseda.jp
,
Aiichiro Nagaki
b   Department of Synthetic and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
,
Hiroki Shimoda
a   Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan   Email: mnakada@waseda.jp
,
Masahiro Uwamori
a   Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan   Email: mnakada@waseda.jp
,
Jun-ichi Yoshida
b   Department of Synthetic and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
,
Masahisa Nakada*
a   Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan   Email: mnakada@waseda.jp
› Author Affiliations
This work was financially supported in part by JSPS KAKENHI Grant Number 15H05841 in Middle molecular strategy and a Waseda University Grant for Special Research Projects.
Further Information

Publication History

Received: 29 June 2018

Accepted after revision: 10 July 2018

Publication Date:
28 August 2018 (online)


Abstract

Successful transformations of 3-iodo-1-methyl-5,6-dihydropyridin-2(1H)-one into its derivatives by a halogen–lithium exchange and subsequent reactions in a flow microreactor system are described. The methylation of the organolithium compound generated from 3-iodo-1-methyl-5,6-dihydropyridin-2(1H)-one in the flow microreactor system afforded the desired methylated product in 68% yield, whereas the yield of the corresponding batch reaction was 23%. This superiority of the flow microreactor system was further emphasized in the reaction of the organolithium compound with methoxycarbonyl isocyanate, which gave the desired imide in 78% yield by using the flow microreactor system whereas the yield of the corresponding batch reaction was only 2%. The established flow microreactor system was also effectively used for the reaction of the organolithium compound with phenyl isocyanate to afford the desired product in 52% yield.

Supporting Information

 
  • References and Notes

  • 1 Orimoto K. Oyama H. Namera Y. Niwa T. Nakada M. Org. Lett. 2013; 15: 768
  • 2 Enomoto K. Oyama H. Nakada M. Chem. Eur. J. 2015; 21: 2798
  • 3 Oyama H. Nakada M. Tetrahedron: Asymmetry 2015; 26: 195
  • 4 Marth CJ. Gallego GM. Lee JC. Lebold TP. Kulyk S. Kou KG. M. Qin J. Lilien R. Sarpong R. Nature 2015; 528: 493
  • 5 Tomizawa T. Orimoto K. Oyama H. Namera Y. Niwa T. Nakada M. Org. Lett. 2012; 14: 6294
  • 6 Orimoto K. Tomizawa T. Oyama H. Namera Y. Niwa T. Nakada M. Heterocycles 2013; 87: 827
  • 7 Hagemann H. Arlt D. Ugi I. Angew. Chem. Int. Ed. Engl. 1969; 8: 606

    • For reviews on flow microreactor synthesis, see:
    • 8a Mason BP. Price KE. Steinbacher JL. Bogdan AR. McQuade DT. Chem. Rev. 2007; 107: 2300
    • 8b Ahmed-Omer B. Brandt JC. Wirth T. Org. Biomol. Chem. 2007; 5: 733
    • 8c Watts P. Wiles C. Chem. Commun. 2007; 443
    • 8d Fukuyama T. Rahman MT. Sato M. Ryu I. Synlett 2008; 151
    • 8e Yoshida J.-i. Nagaki A. Yamada T. Chem. Eur. J. 2008; 14: 7450
    • 8f Hartman RL. Jensen KF. Lab Chip 2009; 9: 2495
    • 8g McMullen JP. Jensen KF. Annu. Rev. Anal. Chem. 2010; 3: 19
    • 8h Yoshida J.-i. Kim H. Nagaki A. ChemSusChem 2011; 4: 331
    • 8i Wiles C. Watts P. Green Chem. 2012; 14: 38
    • 8j Kirschining A. Kupracz L. Hartwig J. Chem. Lett. 2012; 41: 562
    • 8k McQuade DT. Seeberger PH. J. Org. Chem. 2013; 78: 6384
    • 8l Elvira KS. Casadevall i Solvas X. Wootton RC. R. deMello AJ. Nat. Chem. 2013; 5: 905
    • 8m Pastre JC. Browne DL. Ley SV. Chem. Soc. Rev. 2013; 42: 8849
    • 8n Baxendale IR. J. Chem. Technol. Biotechnol. 2013; 88: 519
    • 8o Fukuyama T. Totoki T. Ryu I. Green Chem. 2014; 16: 2042
    • 8p Gemoets HP. L. Su Y. Shang M. Hessel V. Luque R. Noël T. Chem. Soc. Rev. 2016; 45: 83
    • 8q Cambié D. Bottecchia C. Straathof NJ. W. Hessel V. Noël T. Chem. Rev. 2016; 116: 10276
    • 8r Plutschack MB. Pieber B. Gilmore K. Seeberger PH. Chem. Rev. 2017; 117: 11796
    • 8s Yoshida J.-i. Kim H. Nagaki A. J. Flow Chem. 2017; 7: 60
    • 9a Kim H. Nagaki A. Yoshida J.-i. Nat. Commun. 2011; 2: 264
    • 9b Nagaki A. Matsuo C. Kim S. Saito K. Miyazaki A. Yoshida J.-i. Angew. Chem. Int. Ed. 2012; 51: 3245
    • 9c Nagaki A. Ichinari D. Yoshida J.-i. J. Am. Chem. Soc. 2014; 136: 12245
    • 9d Nagaki A. Imai K. Ishiuchi S. Yoshida J.-i. Angew. Chem. Int. Ed. 2015; 54: 1914
    • 9e Nagaki A. Takahashi Y. Yoshida J.-i. Angew. Chem. Int. Ed. 2016; 55: 5327
  • 10 Albrecht D. Vogt F. Bach T. Chem. Eur. J. 2010; 16: 4284
  • 11 1,3-Dimethyl-5,6-dihydropyridin-2(1H)-one (7); Typical Microflow Procedure A flow microreactor system consisting of two T-shaped micromixers (i.d. 250 μm), two microtube reactors (R1 and R2), and three pre-cooling units was used. The flow microreactor system was immersed in a cooling bath at –78 °C. A 0.25 M solution of 4 in THF (flow rate: 9.0 mL/min) and a 0.1125 M solution of PhLi in Et2O–cyclohexane (8:1, flow rate: 3.0 mL/min) were introduced into the first mixer by syringe pumps. The resulting solution was passed through R1 (i.d. 1000 μm; length 2.6 cm; residence time 0.14 s) and mixed with a 0.75 M solution of MeOTf in Et2O (flow rate: 9.0 mL/min) in the second micromixer. The resulting solution passed through R2–1 (i.d. 1000 μm, length 200 cm) at –78 °C and then through R2–2 (i.d. 1000 μm, length 200 cm) at r.t. When a steady state was reached, an aliquot of the product solution was collected in a flask containing Et3N (0.5 mL) for 30 s. The yield was determined by GC analysis using an internal standard (hexadecane); Rf = 0.36 (hexane–EtOAc, 1:2). A colorless oil; yield: 68%. IR (ATR): 3468, 2924, 1670, 1627, 1492, 1361, 1310, 1225, 1063, 846 cm–1. 1H NMR (400 MHz, CDCl3): δ = 6.30–6.22 (m, 1 H), 3.37 (t, J = 7.2 Hz, 2 H), 2.99 (s, 3 H), 2.36–2.25 (m, 2 H), 1.87 (q, J = 2.0 Hz, 3 H). 13C NMR (125 MHz, CDCl3): δ = 166.3, 133.3, 131.5, 47.9, 34.7, 23.7, 17.3. HRMS (ESI): m/z [M + Na] calcd for C7H11NNaO: 148.0738; found: 148.0733.