Synlett 2018; 29(15): 2015-2018
DOI: 10.1055/s-0037-1610262
letter
© Georg Thieme Verlag Stuttgart · New York

The Acceleration of the Rearrangement of α-Hydroxy Aldimines by Lewis or Brønsted Acids

Xin Zhang
,
Yijing Dai
,
William D. Wulff*
Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA   Email: wulff@chemistry.msu.edu
› Author Affiliations
This work was supported by a grant from the National Institute of General Medical Sciences (GM094478).
Further Information

Publication History

Received: 03 August 2018

Accepted after revision: 05 August 2018

Publication Date:
28 August 2018 (online)


Abstract

An efficient method was developed for the synthesis of α-amino ketones from α-hydroxy imines. The reaction occurs through an α-iminol rearrangement involving the migration of a substituent of the carbinol carbon to the imine carbon. The optimal catalysts were found to be silica gel or montmorillonite K 10, which effected migration of a variety of aryl and alkyl substituents in high yields. The rearrangement can also be carried out on imines generated in situ from aldehydes and amines in essentially the same yields as those from the preformed imines.

 
  • References and Notes

  • 1 Paquette LA, Hofferberth JE. Org. React. 2003; 62: 477
    • 2a Brunner H, Kagan HB, Kreutzer G. Tetrahedron: Asymmetry 2003; 14: 2177
    • 2b Liu Y, McWhorter Jr WW, Hadden CE. Org. Lett. 2003; 5: 333
    • 2c Liu Y, McWhorter Jr WW. J. Org. Chem. 2003; 68: 2618
    • 2d Liu Y, McWhorter Jr WW. J. Am. Chem. Soc. 2003; 125: 4240
    • 2e Binder JT, Crone B, Kirsch SF, Liébert C, Menz H. Eur. J. Org. Chem. 2007; 1636
    • 2f Movassaghi M, Schmidt MA, Ashenjurst JA. Org. Lett. 2008; 10: 4009
    • 2g Fuji H, Ogawa R, Ohata K, Nemoto T, Makajima M, Hasebe K, Mochizuki H, Nagase H. Bioorg. Med. Chem. 2009; 17: 5983
    • 2h Lu G, Katoh A, Zhang Z, Hu Z, Lei P, Kimura M. J. Heterocycl. Chem. 2010; 47: 932
    • 2i Yang T.-F, Shen C.-H, Hsu C.-T, Chen L.-H, Chuang C.-H. Tetrahedron 2010; 66: 8734
    • 2j Qi X, Bao H, Tambar UK. J. Am. Chem. Soc. 2011; 133: 10050
    • 2k Han S, Movassaghi M. J. Am. Chem. Soc. 2011; 133: 10768
    • 2l Liu S, Hao X.-J. Tetrahedron Lett. 2011; 52: 5640
    • 2m Harayan AR. N, Sarpong R. Org. Biomol. Chem. 2012; 10: 70
    • 2n Fustero S, Albert L, Maten N, Chiva G, Miró J, González J, Aceña JL. Chem. Eur. J. 2012; 18: 3753
    • 2o Yang T.-F, Chen L.-H, Kao L.-T, Chuang C.-H, Chen Y.-Y. J. Chin. Chem. Soc. (Weinheim, Ger.) 2012; 59: 378
    • 2p Hays PA, Casale JF, Berrier AL. Microgram J. 2012; 9: 3
    • 2q Ahmadi A, Khalili M, Hajikhani R, Hosseini H, Afhin N, Nahri-Niknafs B. Med. Chem. (Sharjah, United Arab Emirates) 2012; 8: 246
    • 2r Liu S, Scotti JS, Kozmin SA. J. Org. Chem. 2013; 78: 8645
    • 2s Zhang Z.-J, Ren Z.-H, Wang Y.-Y, Guan Z.-H. Org. Lett. 2013; 15: 4822
    • 2t Frongia A, Secci F, Capitta F, Piras PP, Sanna ML. Chem. Commun. 2013; 49: 8812

      For recent examples of other methods for the synthesis of α-amino ketones, see:
    • 3a Li G.-Q, Dai L.-X, You S.-L. Chem. Commun. 2007; 852
    • 3b Liu L, Zheng Y, Hu X, Lian C, Yuan W, Zhang X. Chem. Res. Chin. Univ. 2014; 30: 235
    • 3c Farahi M, Tamaddon F, Karami B, Pasdar S. Tetrahedron Lett. 2015; 56: 1887
    • 3d Wen W, Zeng Y, Peng L.-Y, Fu L.-N, Guo Q.-X. Org. Lett. 2015; 17: 3922
    • 3e Tamaddon F, Tafti AD. Synlett 2016; 27: 2217
    • 3f Lin L, Bai X, Ye X, Zhao X, Tan C.-H, Jiang Z. Angew. Chem. Int. Ed. 2017; 56: 13842
  • 4 Zhang X, Staples RJ, Rheingold AL, Wulff WD. J. Am. Chem. Soc. 2014; 136: 13971
  • 5 Our recent report on catalytic asymmetric α-iminol rearrangement is the single exception in the case of aldimines (see ref. 4).
  • 6 1,2-Diphenyl-2-(phenylamino)ethanone (2a); Typical ProcedureA slurry of imine 1a (0.0287 g, 0.100 mmol) and silica gel (0.0280 g) in toluene (0.3 mL) was placed in a 20 mL vial under air, and the vial was sealed with a screw-cap and heated at 80 °C for 1 h. Alternatively, a slurry of 1a (0.0287 g, 0.100 mmol) and montmorillonite K (0.0285 g) in toluene (0.3 mL) was placed in a 20 mL vial under air, and the vial was sealed with a screw-cap and heated at 60 °C for 1.5 h. After the solution had cooled to r.t., it was concentrated on a rotary evaporator and the residue was purified by flash column chromatography [silica gel, hexane–CHCl3 (1:2)] to give a yellow solid; yield: 0.0272 g (95%, 0.0948 mmol) (with silica gel) or 0.0287 g (100%) (with montmorillonite K 10); mp = 89–92 °C.1H NMR (500 MHz, CDCl3): δ = 5.62 (br s, 1 H), 6.04 (s, 1 H), 6.70–6.72 (m, 3 H), 7.14 (t, J = 8.0 Hz, 2 H), 7.21 (t, J = 7.5 Hz, 1 H), 7.28 (t, J = 7.5 Hz, 2 H), 7.42–7.46 (m, 4 H), 7.52 (t, J = 7.5 Hz, 1 H), 8.00 (d, J = 7.5 Hz, 2 H). 13C NMR (125 MHz, CDCl3): δ = 62.88, 113.72, 118.04, 128.11, 128.15, 128.66, 128.85, 129.04, 129.22, 133.49, 135.05, 137.56, 145.90, 196.97.
  • 7 Stevens CL, Thuillier A, Daniher FA. J. Org. Chem. 1965; 30: 2962
  • 8 Yokoyama R, Matsumoto S, Momura S, Higaki T, Yokoyama T, Kiyooka S.-i. Tetrahedron 2009; 65: 5181