Synthesis 2018; 50(24): 4715-4745
DOI: 10.1055/s-0037-1610297
review
© Georg Thieme Verlag Stuttgart · New York

Advances in Catalytic Aerobic Oxidations by Activation of Dioxygen-Monooxygenase Enzymes and Biomimetics

Marina Petsi
,
Aristotle University of Thessaloniki, Department of Chemistry, Laboratory of Organic Chemistry, Main Campus, Thessaloniki, 54124, Greece   Email: alzograf@chem.auth.gr
› Author Affiliations
This work was supported by the project ‘OPENSCREEN-GR’ (MIS 5002691) which is implemented under the Action ‘Reinforcement of the Research and Innovation Infrastructure’, funded by the Operational Program ‘Competitiveness, Entrepreneurship and Innovation’ (NSRF 2014-2020) and co-financed by Greece and the European Union (European Regional Development Fund). Part of the project was inspired by helpful discussions within CH-Activation in Organic Synthesis COST Action CA15106.
Further Information

Publication History

Received: 23 July 2018

Accepted after revision: 03 September 2018

Publication Date:
15 October 2018 (online)


Abstract

Monooxygenases are not only some of the most versatile machineries in our lives, but also some of the most explored enzymes in modern organic synthesis. They provide knowledge and inspiration on how the most abandoned oxidant, dioxygen, can be activated and utilized to deliver selective oxidations. This review presents an outline in the mechanisms that Nature uses to succeed in these processes and recent indicative examples on how chemists use this knowledge to develop selective oxidation protocols based on dioxygen as the terminal oxidant.

1 Introduction

2 Monooxygenases

2.1 Metal-Based Monooxygenases

2.1.1 Cytochromes

2.1.2 Copper-Dependent Monooxygenases

2.1.3 Heme-Independent Iron Monooxygenases

2.1.4 Pterin-Dependent Monooxygenases

2.2 Metal-Free Monooxygenases

2.2.1 Flavin-Dependent Monooxygenases

2.2.2 Systems without Cofactors

3 Biomimetic Aerobic Oxidations

3.1 Aerobic Oxidations Based on Metal Catalysts

3.1.1 Epoxidations and Allylic Oxidations

3.1.2 Oxidations of Unactivated Carbon Atoms and Benzylic Oxidations

3.1.3 Oxidations of Aryl Groups

3.1.4 Heteroatom Oxidations

3.2 Aerobic Oxidations Based on Organocatalysts

3.2.1 Baeyer–Villiger Oxidations

3.2.2 Oxidations of Aryl Groups

3.2.3 Heteroatom Oxidations

4 Conclusion

 
  • References

  • 1 Class 1 Oxidoreductases . In Springer Handbook of Enzymes . Schomburg D. Schomburg I. Chang A. Springer; Berlin: 2009
  • 2 Modern Oxidation Methods . Bäckvall J.-E. John Wiley & Sons; Hoboken: 2004
  • 3 Oxidation of C–H Bonds . Lu W. Zhou L. John Wiley & Sons; Hoboken: 2017

    • For exhaustive coverage please refer to:
    • 4a Science of Synthesis: Catalytic Oxidation in Organic Synthesis. Muniz K. Thieme; Stuttgart: 2018
    • 4b Oxidations in Organic Synthesis . Ahluwalia VL. CRC Press; Boca Raton: 2012
  • 5 Holtmann D. Hollmann F. ChemBioChem 2016; 17: 1391
  • 6 Torres Pazmiňo DE. Winkler M. Glieder A. Fraaije MW. J. Biotechnol. 2010; 146: 9
  • 7 Cirino PC. Arnold FH. Curr. Opin. Chem. Biol. 2002; 6: 130
  • 8 Xu F. Ind. Biotechnol. 2005; 1: 38
  • 9 Sellés Vidal L. Kelly CL. Mordaka PM. Heap JT. Protein Proteomics 2018; 1866: 327
  • 10 Nelson DR. Koymans L. Kamataki T. Stegeman JJ. Feyereisen R. Waxman DJ. Waterman MR. Gotoh O. Coon MJ. Estabrook RW. Gunsalus IC. Nebert DW. Pharmacogenetics 1996; 6: 1
  • 11 Bernhart R. J. Biotechnol. 2006; 124: 128
  • 12 Denisov IG. Makris TM. Sligar SG. Schlichting I. Chem. Rev. 2005; 105: 2253
  • 13 Sono M. Roach MP. Coulter ED. Dawson JH. Chem. Rev. 1996; 96: 2841
  • 14 Levin EY. Levenberg B. Kaufman S. J. Biol. Chem. 1960; 235: 2080
  • 15 Xin X. Mains RE. Eipper BA. J. Biol. Chem. 2004; 279: 48159
  • 16 Prigge ST. Main RE. Eipper BA. Amzel LM. Cell. Mol. Life Sci. 2000; 57: 1236
  • 17 Owen TC. Merkler DJ. Med. Hypotheses 2004; 62: 392
  • 18 Klinman JP. J. Biol. Chem. 2006; 281: 3013
  • 19 Aboelella NW. Kryatov SV. Gherman BF. Brennessel WW. Young VG. Sarangi R. Rybak-Akimova EV. Hodgson KO. Hedman B. Solomon EI. Cramer CJ. Tolman WB. J. Am. Chem. Soc. 2004; 126: 16896
  • 20 Hanson RS. Hanson TE. Microbiol. Rev. 1996; 60: 439
  • 21 Murrell JC. McDonald IR. Gilbert B. Trends Microbiol. 2000; 8: 221
  • 22 Merkx M. Kopp DA. Sazinsky MH. Blazyk JL. Müller J. Lippard SJ. Angew. Chem. Int. Ed. 2001; 40: 2782
  • 23 Balasubramanian R. Smith SM. Rawat S. Yatsunyk LA. Stemmler TL. Rosenzweig AC. Nature (London) 2010; 465: 115
  • 24 Chan SI. Chen KH.-C. Yu SS.-F. Chen C.-L. Kuo SS.-J. Biochemistry 2004; 43: 4421
  • 25 Zahn JA. Bergmann DJ. Boyd JM. Kunz RC. DiSpirito AA. J. Bacteriol. 2001; 183: 6832
  • 26 Cook SA. Shiemke AK. Arch. Biochem. Biophys. 2002; 398: 32
  • 27 Green J. Dalton H. J. Biol. Chem. 1989; 264: 17698
  • 28 Cafaro V. Scognamiglio R. Viggiani A. Izzo V. Passaro I. Notomista E. Dal Piaz F. Amoresano A. Casbarra A. Pucci P. Di Donato A. Eur. J. Biochem. 2002; 269: 5689
  • 29 Pikus JD. Studts JM. Achim C. Kauffmann KE. Münck E. Steffan RJ. McClay K. Fox BG. Biochemistry 1996; 35: 9106
  • 30 Wallar BJ. Lipscomb JD. Chem. Rev. 1996; 96: 2625
  • 31 Leahy JG. Batchelor PJ. Morcomb SM. FEMS Microbiol. Rev. 2003; 27: 449
  • 32 Hausinger RP. Crit. Rev. Biochem. Mol. Biol. 2004; 39: 21
  • 33 Price JC. Barr EW. Tirupati B. Bollinger JM. Jr. Krebs C. Biochemistry 2003; 42: 7497
  • 34 Krebs C. Galonić Fujimori D. Walsh CT. Bollinger JM. Jr. Acc. Chem. Res. 2007; 40: 484
  • 35 Hoffart LM. Barr EW. Guyer RB. Bollinger JM. Jr. Krebs C. Proc. Natl. Acad. Sci. U.S.A. 2006; 103: 14738
  • 36 Matthews ML. Krest CM. Barr EW. Vaillancourt FH. Walsh CT. Green MT. Krebs C. Bollinger JM. Jr. Biochemistry 2009; 48: 4331
  • 37 Galonić Fujimori D. Barr EW. Matthews ML. Koch GM. Yonce JR. Walsh CT. Bollinger JM. Jr. Krebs C. Riggs-Gelasco PJ. J. Am. Chem. Soc. 2007; 129: 13408
  • 38 Wong SD. Srnec M. Matthews ML. Liu LV. Kwak Y. Park K. Bell CB. III. Alp EE. Zhao J. Yoda Y. Kitao S. Seto M. Krebs C. Bollinger JM. Jr. Solomon EI. Nature (London) 2013; 499: 320
  • 39 Gallagher SC. Cammark R. Dalton H. Eur. J. Biochem. 1997; 247: 635
  • 40 Whited GM. Gibson DT. J. Bacteriol. 1991; 173: 3010
  • 41 van Beilen JB. Funhoff EG. Appl. Microbiol. Biotechnol. 2007; 74: 13
  • 42 Rosenzweig AC. Frederick CA. Lippard SJ. Nordlund P. Nature (London) 1993; 366: 537
  • 43 Elango N. Radhakrishnan R. Froland WA. Wallar BJ. Earhart CA. Lipscomb JD. Ohlendorf DH. Protein Sci. 1997; 6: 556
  • 44 Baik M.-H. Newcomb M. Friesner RA. Lippard SJ. Chem. Rev. 2003; 103: 2385
  • 45 Lund J. Dalton H. Eur. J. Biochem. 1985; 147: 291
  • 46 Liu Y. Nesheim JC. Paulsen KE. Stankovich MT. Lipscomb JD. Biochemistry 1997; 36: 5223
  • 47 Kopp DA. Gassner GT. Blazyk JL. Lippard SK. Biochemistry 2001; 40: 14932
  • 48 Sazinsky MH. Lippard SJ. Acc. Chem. Res. 2006; 39: 558
  • 49 Gassner GT. Lippard SJ. Biochemistry 1999; 38: 12768
  • 50 Liu Y. Nesheim JC. Lee SK. Lipscomb JD. J. Biol. Chem. 1995; 270: 24665
  • 51 Sazinsky MH. Lippard SJ. J. Am. Chem. Soc. 2005; 127: 5814
  • 52 Wang W. Lippard SJ. J. Am. Chem. Soc. 2014; 136: 2244
  • 53 Tinberg CE. Lippard SJ. Biochemistry 2009; 48: 12145
  • 54 Shu L. Nesheim JC. Kauffmann K. Münck E. Lipscomb JD. Que LJr. Science 1997; 275: 515
  • 55 Tinberg CE. Lippard SJ. Biochemistry 2010; 49: 7902
  • 56 Lee SK. Fox BG. Froland WA. Lipscomb JD. Münck E. J. Am. Chem. Soc. 1993; 115: 6450
  • 57 Wubbolts MG. Hoven J. Melgert B. Witholt B. Enzym. Microb. Technol. 1994; 16: 887
  • 58 van Beilen JB. Kingma J. Witholt B. Enzym. Microb. Technol. 1994; 16: 904
  • 59 Bertrand E. Sakai R. Rozhkova-Novosad E. Moe L. Fox BG. Groves JT. Austin RN. J. Inorg. Biochem. 2005; 99: 1998
    • 60a Feingersch R. Shainsky J. Wood TK. Fishman A. Appl. Environ. Microbiol. 2008; 74: 1555
    • 60b Rui L. Kwon YM. Fishman A. Reardon KF. Wood TK. Appl. Environ. Microbiol. 2004; 70: 3246
  • 61 Fitzpatrick PF. Biochemistry 2003; 42: 14084
  • 62 For an extensive review on full scope of flavoenzymes in organisms please see: Walsh CT. Wencewicz TA. Nat. Prod. Rep. 2013; 30: 175
  • 63 Walsh C. Enzymatic Reaction Mechanisms . W. H. Freeman; Oxford: 1979
  • 64 Piano V. Palfey BA. Mattevi A. Trends Biochem. Sci. 2017; 42: 457
  • 65 Valton J. Mathevon C. Fontecave M. Nivière V. Ballou DP. J. Biol. Chem. 2008; 283: 10287
  • 66 McDonald CA. Fagan RL. Collard F. Monnier VM. Palfey BA. J. Am. Chem. Soc. 2011; 133: 16809
  • 67 De Colibus L. Mattevi A. Curr. Opin. Struct. Biol. 2006; 16: 722
  • 68 Feng L. Wang W. Cheng J. Ren Y. Zhao G. Gao C. Tang Y. Liu X. Han W. Peng X. Liu R. Wang L. Proc. Natl. Acad. Sci. U.S.A. 2007; 104: 5602
  • 69 Li L. Liu X. Yang W. Xu F. Wang W. Feng L. Bartlam M. Wang L. Rao Z. J. Mol. Biol. 2008; 376: 453
  • 70 van Berkel WJ. H. Kamerbeek NM. Fraaije MW. J. Biotechnol. 2006; 124: 670
  • 71 Huijbers MM. E. Montersino S. Westphal AH. Tischler D. van Berkel WJ. H. Arch. Biochem. Biophys. 2014; 544: 2
  • 72 Palfey BA. McDonald CA. Arch. Biochem. Biophys. 2010; 493: 26
  • 73 Chaiyen P. Fraaije MW. Mattevi A. Trends Biochem. Sci. 2012; 37: 373
  • 74 Teufel R. Stull F. Meehan MJ. Michaudel Q. Dorrestein PC. Palfey B. Moore BS. J. Am. Chem. Soc. 2015; 137: 8078
  • 75 Teufel R. Agarwal V. Moore BS. Curr. Opin. Chem. Biol. 2016; 31: 31
  • 76 Teufel R. Miyanaga A. Michaudel Q. Stull F. Louie G. Noel JP. Baran PS. Palfey B. Moore BS. Nature (London) 2013; 503: 552
  • 77 Kallio P. Liu Z. Mäntsälä P. Niemi J. Metsä-Ketelä M. Chem. Biol. 2008; 15: 157
  • 78 Kallio P. Patrikainen P. Suomela J.-P. Mäntsälä P. Metsä-Ketelä M. Niemi J. Biochemistry 2011; 50: 5535
  • 79 Walsh CT. Chen Y.-CJ. Angew. Chem., Int. Ed. Engl. 1988; 27: 333
  • 80 Orru R. Dudek HM. Martinoli C. Torres Pazmiño DE. Royant A. Weik M. Fraaije MW. Mattevi A. J. Biol. Chem. 2011; 286: 29284
  • 81 Vaillancourt FH. Yeh E. Vosburg DA. Garneau-Tsodikova S. Walsh CT. Chem. Rev. 2006; 106: 3364
  • 82 Neumann CS. Galonić Fujimori D. Walsh CT. Chem. Biol. 2008; 15: 99
  • 83 Yeh E. Garneau S. Walsh CT. Proc. Natl. Acad. Sci. U.S.A. 2005; 102: 3960
  • 84 Nagumo A. Kamei T. Sakakibara J. Ono T. J. Lipid Res. 1995; 36: 1489
  • 85 Thibodeaux CJ. Chang W.-C. Liu H.-W. Chem. Rev. 2012; 112: 1681
  • 86 Ames BD. Liu X. Walsh CT. Biochemistry 2010; 49: 8564
  • 87 Gao X. Chooi Y.-H. Ames BD. Wang P. Walsh CT. Tang Y. J. Am. Chem. Soc. 2011; 133: 2729
  • 88 Li S. Finefield JM. Sunderhaus JD. McAfoos TJ. Williams RM. Sherman DH. J. Am. Chem. Soc. 2012; 134: 788
  • 89 Minami A. Shimaya M. Suzuki G. Migita A. Shinde SS. Sato K. Watanabe K. Tamura T. Oguri H. Oikawa H. J. Am. Chem. Soc. 2012; 134: 7246
  • 90 Cane DE. Celmer WD. Westley JW. J. Am. Chem. Soc. 1983; 105: 3594
  • 91 Mukherjee T. Zhang Y. Abdelwahed S. Ealick SE. Begley TP. J. Am. Chem. Soc. 2010; 132: 5550
  • 92 Cheng Q. Xiang L. Izumikawa M. Meluzzi D. Moore BS. Nat. Chem. Biol. 2007; 3: 557
  • 93 Favorskii AE. J. Russ. Phys. Chem. Soc. 1905; 37: 643
  • 94 Hertweck C. Luzhetskyy A. Rebets Y. Bechthold A. Nat. Prod. Rep. 2017; 24: 162
  • 95 Adams MA. Jia Z. J. Biol. Chem. 2005; 280: 8358
  • 96 Fetzner S. Appl. Microbiol. Biotechnol. 2002; 60: 243

    • For reviews on general aerobic oxidations, see:
    • 97a Parmeggiani C. Matassini C. Cardona F. Green Chem. 2017; 19: 2030
    • 97b Muthusamy S. Kumarwamyreddy N. Kesavan V. Chandrasekaran S. Tetrahedron Lett. 2016; 57: 5551
    • 97c Chen B. Wang L. Gao S. ACS Catal. 2015; 5: 5851
    • 97d Gunasekaran N. Adv. Synth. Catal. 2015; 357: 1990

      For reviews, see:
    • 98a Ogilby PR. Chem. Soc. Rev. 2010; 39: 3181
    • 98b Alberti MN. Orfanopoulos M. Chem. Eur. J. 2010; 16: 9414
    • 98c Montagnon T. Tofi M. Vassilikogiannakis G. Acc. Chem. Res. 2008; 41: 1001
  • 99 Russo A. De Fusco C. Lattanzi A. ChemCatChem 2012; 4: 901
  • 100 Bérubé C. Voyer N. Synth. Commun. 2016; 46: 395
  • 101 Chen S. Hossain MS. Foss FW. Jr. Org. Lett. 2012; 14: 2806
  • 102 Kienle M. Argyrakis W. Baro A. Laschat S. Tetrahedron Lett. 2008; 49: 1971
  • 103 Cusso O. Serrano-Plana J. Costas M. Catalysis 2017; 7: 5046
  • 104 Yang J. Gabriele B. Belvedere S. Hung Y. Breslow R. J. Org. Chem. 2002; 67: 5057
  • 105 Serrano-Plana J. Aguinaco A. Belda R. García-España E. Basallote MG. Company A. Costas M. Angew. Chem. Int. Ed. 2016; 55: 6310
  • 106 Grant JL. Mitchell ME. Makris TM. Proc. Natl. Acad. Sci. U.S.A. 2016; 113: 10049
  • 107 Zachos I. Gaßmeyer SK. Bauer D. Sieber V. Hollmann F. Kourist R. Chem. Commun. 2015; 51: 1918
    • 108a Klinman JP. Biochemistry 2013; 52: 2068
    • 108b Klinman JP. Offenbacher AR. Hu S. J. Am. Chem. Soc. 2017; 139: 18409
  • 109 Katsuki T. Sharpless KB. J. Am. Chem. Soc. 1980; 102: 5974
  • 110 Irie R. Noda K. Ito Y. Matsumoto N. Katsuki T. Tetrahedron Lett. 1990; 31: 7345
  • 111 Irie R. Noda K. Ito Y. Katsuki T. Tetrahedron Lett. 1990; 32: 1055
  • 112 Irie R. Noda K. Ito Y. Matsumoto N. Katsuki T. Tetrahedron: Asymmetry 1991; 2: 481
  • 113 Irie R. Ito Y. Katsuki T. Synlett 1991; 265
  • 114 Zhang W. Loebach JL. Wilson SR. Jacobsen EN. J. Am. Chem. Soc. 1990; 112: 2801
  • 115 Zhang W. Jacobsen EN. J. Org. Chem. 1991; 56: 2296
  • 116 Jacobsen EN. Zhang W. Muci AR. Ecker JR. Deng L. J. Am. Chem. Soc. 1991; 113: 7063
  • 117 Palucki M. Pospisil PJ. Zhang W. Jacobsen EN. J. Am. Chem. Soc. 1994; 116: 9333
  • 118 Breuer M. Ditrich K. Habicher T. Hauer B. Keßeler M. Stürmer R. Zelinski T. Angew. Chem. Int. Ed. 2004; 43: 788
  • 119 Bonini C. Righi G. Tetrahedron 2002; 58: 4981
  • 120 McGarrigle E. Gilheany DG. Chem. Rev. 2005; 105: 1563
  • 121 Xia Q.-H. Ge H.-Q. Ye C.-P. Liu Z.-M. Su K.-X. Chem. Rev. 2005; 105: 1603
  • 122 Piera J. Bäckvall J.-E. Angew. Chem. Int. Ed. 2008; 47: 3506
  • 123 De Faveri G. Ilyashenko G. Watkinson M. Chem. Soc. Rev. 2011; 40: 1722
  • 124 Shi Y. Acc. Chem. Res. 2004; 27: 488
  • 125 Ostovic D. Bruice TC. Acc. Chem. Res. 1992; 25: 314
  • 126 Gross Z. Nimri S. J. Am. Chem. Soc. 1995; 117: 8021
  • 127 Stephenson NA. Bell AT. Inorg. Chem. 2007; 46: 2278
  • 128 Beauvais LG. Lippard SJ. J. Am. Chem. Soc. 2005; 127: 7370
  • 129 Suzuki K. Oldenburg PD. Que LJr. Angew. Chem. Int. Ed. 2008; 47: 1887
  • 130 Bassan A. Blomberg MR. A. Siegbahn PE. M. Que LJr. Angew. Chem. Int. Ed. 2005; 44: 2939
  • 131 Groves JT. Nemo TE. Myers RS. J. Am. Chem. Soc. 1979; 101: 1032
  • 132 Sahu S. Goldberg DP. J. Am. Chem. Soc. 2016; 138: 11410
  • 133 Gelalcha FG. Adv. Synth. Catal. 2014; 356: 261
  • 134 Jacobsen EN. In Catalytic Asymmetric Synthesis . Ojima I. VCH; New York: 1993: 159
  • 135 Katsuki T. In Catalytic Asymmetric Synthesis . Ojima I. John Wiley and Sons; New York: 2000. 2nd ed. 287
  • 136 Kaku Y. Otsuka M. Ohno M. Chem. Lett. 1989; 18: 611
  • 137 Cheng QF. Xu XY. Ma WX. Yang SJ. You TP. Chin. Chem. Lett. 2005; 16: 1467
  • 138 Chatterjee S. Paine TK. Angew. Chem. Int. Ed. 2016; 55: 7717
  • 139 Law NA. Caudle MT. Pecorano VL. In Advances in Inorganic Chemistry . Vol. 46. Sykes AG. Academic Press; New York: 1998: 305
  • 140 Pecorano VL. Baldwin MJ. Gelasco A. Chem. Rev. 1994; 94: 807
  • 141 Weschler CJ. Hoffman BM. Basolo FJ. J. Am. Chem. Soc. 1975; 97: 5278
  • 142 Hoffman BM. Szymanski T. Brown TG. Basolo F. J. Am. Chem. Soc. 1978; 100: 7253
  • 143 Hoffman BM. Weschler CJ. Basolo F. J. Am. Chem. Soc. 1976; 98: 5473
  • 144 Moxon NT. Fielding PE. Gregson AK. J. Chem. Soc., Chem. Commun. 1981; 98
  • 145 Lever AB. P. Wilshire JP. Quan SK. J. Am. Chem. Soc. 1979; 101: 3668
  • 146 Uchida K. Naito S. Soma M. Onishi T. Tamaru K. J. Chem. Soc., Chem. Commun. 1978; 217
  • 147 Dismukes GC. Sheats JE. Smegal JA. J. Am. Chem. Soc. 1987; 109: 7202
  • 148 Watanabe T. Ama T. Nakamoto K. Inorg. Chem. 1983; 22: 2470
  • 149 Battioni P. Bartoli JF. Leduc P. Fontecave M. Mansuy D. J. Chem. Soc., Chem. Commun. 1987; 791
  • 150 van Esch JH. Roks MF. M. Nolte RJ. M. J. Am. Chem. Soc. 1986; 108: 6093
  • 151 Gosling PA. Hoffmann MA. M. van Esch JH. Nolte RJ. M. J. Chem. Soc., Chem. Commun. 1993; 472
  • 152 Schenning AP. H. J. Hubert DH. W. van Esch JH. Feiters MC. Nolte RJ. M. Angew. Chem., Int. Ed. Engl. 1994; 33: 2468
  • 153 Oszajacaa M. Franke A. Małgorzata B. Grażyna S. Eldik Coord. Chem. Rev. 2016; 306: 483
  • 154 Yamada T. Imagawa K. Negata T. Mukaiyama T. Bull. Chem. Soc. Jpn. 1994; 67: 2248
  • 155 Nagata T. Imagawa K. Yamada T. Mukaiyama T. Bull. Chem. Soc. Jpn. 1995; 68: 1455
  • 156 Imagawa K. Nagata T. Yamada T. Mukaiyama T. Chem. Lett. 1994; 23: 527
  • 157 Mukaiyama T. Yamada T. Bull. Chem. Soc. Jpn. 1995; 68: 17
  • 158 Bryliakov KP. Kholdeeva OA. Vanina MP. Talsi EP. J. Mol. Catal. A: Chem. 2002; 178: 47
  • 159 Mukaiyama T. Yamada T. Nagata T. Imagawa K. Chem. Lett. 1993; 22: 327
  • 160 Nagata T. Imagawa K. Yamada T. Mukaiyama T. Inorg. Chim. Acta 1994; 220: 283
  • 161 Nagata T. Imagawa K. Yamada T. Mukaiyama T. Chem. Lett. 1994; 23: 1259
  • 162 Rhodes B. Rowling S. Tidswell P. Woodward S. Brown SM. J. Mol. Catal. A: Chem. 1997; 116: 375
  • 163 Lee NH. Baik JS. Han SB. Bull. Korean Chem. Soc. 1997; 18: 796
  • 164 Pozzi G. Cinato F. Chem. Commun. 1998; 877
  • 165 Bhattacharjee S. Anderson JA. Catal. Lett. 2004; 95: 119
  • 166 Shen D. Saracini C. Lee Y.-M. Sun W. Fukuzumi S. Nam W. J. Am. Chem. Soc. 2016; 138: 15857
  • 167 Porter MJ. Skidmore J. Asymmetric Epoxidation of Electron-Deficient Alkenes . In Organic Reactions . Vol. 74. Denmark SE. John Wiley & Sons; New York: 2010: 426
    • 168a Murahashi S.-I. Zhang D. Chem. Soc. Rev. 2008; 37: 1490
    • 168b Dunn AE. Dmochowski IJ. Winkler JR. Gray HB. J. Am. Chem. Soc. 2003; 125: 12450
    • 168c Che C.-M. Huang J.-S. Chem. Commun. 2009; 3996
  • 169 Bryliakov KP. Sustainable Asymmetric Oxidations . In Comprehensive Inorganic Chemistry II . Vol. 6. Reedijk J. Poeppelmeier KR. Elsevier; Amsterdam: 2013: 625
  • 170 Allen SE. Walvoord RR. Padilla-Salinas R. Kozlowski MC. Chem. Rev. 2013; 113: 6234
    • 171a Punniyamurthy T. Velusamy S. Iqbal J. Chem. Rev. 2005; 105: 2329
    • 171b Punniyamurthy T. Rout L. Coord. Chem. Rev. 2008; 252: 134
    • 171c Hayashi M. Kawabata H. Adv. Chem. Res. 2006; 1: 45
  • 172 Kozlowski MC. Copper-Oxygen Chemistry . In Reactive Intermediates in Chemistry and Biology . Vol. 4. Karlin KD. Itoh S. Wiley; Hoboken: 2011: 361
  • 173 Wendlandt AE. Suess AM. Stahl SS. Angew. Chem. Int. Ed. 2011; 50: 11062
  • 174 Stack TD. P. Dalton Trans. 2003; 1881
  • 175 Citek C. Lin B.-L. Phelps TE. Wasinger EC. Stack TD. P. J. Am. Chem. Soc. 2014; 136: 14405
  • 176 Citek C. Gary JB. Wasinger EC. Stack TD. P. J. Am. Chem. Soc. 2015; 137: 6991
  • 177 Klinman JP. Chem. Rev. 1996; 96: 2541
    • 178a Himes RA. Karlin KD. Curr. Opin. Chem. Biol. 2009; 13: 119
    • 178b Cramer CJ. Tolman WB. Acc. Chem. Res. 2007; 40: 601
    • 178c Chaudhuri P. Wieghardt K. Weyhermüller T. Paine TK. Mukherjee S. Mukherjee C. Biol. Chem. 2005; 386: 1023
    • 178d Mirica LM. Ottenwaelder X. Stack TD. P. Chem. Rev. 2004; 104: 1013
    • 178e Kim E. Chufán EE. Kamaraj K. Karlin KD. Chem. Rev. 2004; 104: 1077
    • 178f Zhang CX. Liang H.-C. Humphreys KJ. Karlin KD. Catal. Met. Complexes 2003; 26: 79
    • 179a Kitajima NN. Koda T. Iwata Y. Moro-oka Y. J. Am. Chem. Soc. 1990; 112: 8833
    • 179b Yun X. Hu X. Jin Z. Hu J. Yan C. Yao J. Li H. J. Mol. Catal. A: Chem. 2010; 327: 25
  • 180 Vaughan OP. H. Kyriakou G. Macleod N. Tikhov M. Lambert RM. J. Catal. 2005; 236: 401
    • 181a Chu H. Yang L. Zhang Q. Wang Y. J. Catal. 2006; 241: 225
    • 181b Wang Y. Chu H. Zhu W. Zhang Q. Catal. Today 2008; 131: 496
    • 182a Zhu W. Zhang Q. Wang Y. J. Phys. Chem. C 2008; 112: 7731
    • 182b Su W. Wang S. Ying P. Feng Z. Li C. J. Catal. 2009; 268: 165
  • 183 Karandikar P. Agashe M. Vijayamohanan K. Chandwadkar AJ. Appl. Catal., A 2004; 257: 133
    • 184a Cowell JJ. Santra AK. Lindsay R. Lambert RM. Baraldi A. Goldoni A. Surf. Sci. 1999; 437: 1
    • 184b Cowell JJ. Santra AK. Lambert RM. J. Am. Chem. Soc. 2000; 122: 2381
  • 185 Gerbeleu NV. Palanciuc SS. Simonov YA. Dvorkin AA. Bourosh PN. Reetz MT. Arion VB. Töllner K. Polyhedron 1995; 14: 521
  • 186 Thomas JM. Raja R. Sankar G. Bell RG. Nature (London) 1999; 398: 227
  • 187 Enache DI. Edwards JK. Landon P. Solsona-Espriu B. Carley AF. Herzing AA. Watanabe M. Kiely CJ. Knight DW. Hutchings GJ. Science 2006; 311: 362

    • For indicative examples in the topic please see:
    • 188a Nanjo T. de Lucca EC. Jr. White MC. J. Am. Chem. Soc. 2017; 139: 14586
    • 188b Gormisky PE. White MC. J. Am. Chem. Soc. 2013; 135: 14052
    • 188c Bigi MA. Reed SA. White MC. J. Am. Chem. Soc. 2012; 134: 9721
    • 188d Chen MS. White MC. Science 2007; 318: 783
  • 189 Groves JT. Cytochrome P450: Structure, Mechanism, and Biochemistry . Ortiz de Montellano PR. Kluwer Academic/Plenum; New York: 2005: 1
  • 190 Groves JT. J. Inorg. Biochem. 2006; 100: 434
  • 191 Groves JT. J. Chem. Educ. 1985; 62: 928
  • 192 Kim E. Helton ME. Wasser IM. Karlin KD. Lu S. Huang H.-W. Moënne-Loccoz P. Incarvito CD. Rheingold AL. Honecker M. Kaderli S. Zuberbühler AD. Proc. Natl. Acad. Sci. U.S.A. 2003; 100: 3623
  • 193 Ghiladi RA. Kretzer RM. Guzei I. Rheingold AL. Neuhold Y.-M. Hatwell KR. Zuberbühler AD. Karlin KD. Inorg. Chem. 2001; 40: 5754
  • 194 Mittra K. Chatterjee S. Samanta S. Sengupta K. Bhattacharjee H. Dey A. Chem. Commun. 2012; 48: 10535
  • 195 Liu J.-G. Ohta T. Yamaguchi S. Ogura T. Sakamoto S. Maeda Y. Naruta Y. Angew. Chem. Int. Ed. 2009; 48: 9262
  • 196 Liu J.-G. Shimizu Y. Ohta T. Naruta Y. J. Am. Chem. Soc. 2010; 132: 3672
  • 197 Nagaraju P. Ohta T. Liu J.-G. Ogura T. Naruta Y. Chem. Commun. 2016; 52: 7213
  • 198 Chiang C.-W. Kleespies ST. Stout HD. Meier KK. Li P.-Y. Bominaar EL. Que LJr. Münck E. Lee W.-Z. J. Am. Chem. Soc. 2014; 136: 10846
  • 199 Oddon F. Chiba Y. Nakazawa J. Ohta T. Ogura T. Hikichi S. Angew. Chem. Int. Ed. 2015; 54: 7336
  • 200 Kim SO. Sastri CV. Seo MS. Kim J. Nam W. J. Am. Chem. Soc. 2005; 127: 4178
    • 201a Watanabe Y. Fujii H. Metal-Oxo and Metal-Peroxo Species in Catalytic Oxidations . Meunier B. Springer; Berlin: 2000: 62
    • 201b Fujii H. Coord. Chem. Rev. 2002; 226: 51
    • 201c Fujii H. Model Complexes of Heme Peroxidases . In Heme Peroxidases . Raven E. Dunford B. Royal Society of Chemistry; Cambridge: 2016: 181
    • 201d Meunier B. de Visser SP. Shaik S. Chem. Rev. 2004; 104: 3947
    • 201e Pan Z. Zhang R. Newcomb M. J. Inorg. Biochem. 2006; 100: 524
    • 201f Nam W. Acc. Chem. Res. 2007; 40: 522
    • 201g Costas M. Coord. Chem. Rev. 2011; 255: 2912
    • 201h Hohenberger J. Ray K. Meyer K. Nat. Commun. 2012; 3: 720
    • 201i Rutkowska-Zbik D. Drzewiecka-Matuszek A. Witko M. Top. Catal. 2014; 57: 946
    • 201j Meunier B. Robert A. Pratviel G. Bernadou J. In The Porphyrin Handbook . Vol. 4. Kadish KM. Smith KM. Guilard R. Academic Press; San Diego: 2000: 119
    • 201k Visser SP. Nam W. High-Valent Iron-Oxo Porphyrins in Oxygenation Reactions . In Handbook of Porphyrin Science . Kadish KM. Smith KM. Guilard R. World Scientific Press; New Jersey: 2010: 85
    • 201l McLain JL. Lee J. Groves JT. In Biomimetic Oxidations Catalyzed by Transition Metal Complexes . Meunier B. Imperial College Press; London: 2000: 91
  • 202 Chatterjee S. Paine TK. Angew. Chem. Int. Ed. 2015; 54: 9338
  • 203 Paria S. Chatterjee S. Paine TK. Inorg. Chem. 2014; 53: 2810
  • 204 Pojer F. Kahlich R. Kammerer B. Li S.-M. Heide L. J. Biol. Chem. 2003; 278: 30661
  • 205 Paria S. Que LJr. Paine TK. Angew. Chem. Int. Ed. 2011; 50: 11129
  • 206 Paine TK. Paria S. Que LJr. Chem. Commun. 2010; 46: 1830
    • 207a Mansuy D. Fontecave M. Bartoli JF. J. Chem. Soc. Chem. Commun. 1983; 1: 253
    • 207b Fontecave M. Mansuy D. Tetrahedron 1984; 40: 4297
  • 208 Lyons JE. Ellis PE. Mayers HK. J. Catal. 1995; 155: 59
  • 209 Kitajima N. Fukui H. Moro-oka Y. J. Chem. Soc., Chem. Commun. 1988; 485
  • 210 Kitajima N. Ito M. Fukui H. Moro-oka Y. J. Chem. Soc., Chem. Commun. 1991; 102
  • 211 Jung J. Ohkubo K. Goldberg DP. Fukuzumi S. J. Phys. Chem. A 2014; 118: 6223
  • 212 Prokop KA. Goldberg DP. J. Am. Chem. Soc. 2012; 134: 8014
  • 213 Jung J. Neu HM. Leeladee P. Siegler MA. Ohkubo K. Goldberg DP. Fukuzumi S. Inorg. Chem. 2016; 55: 3218
  • 214 Neu HM. Jung J. Baglia RA. Siegler MA. Ohkubo K. Fukuzumi S. Goldberg DP. J. Am. Chem. Soc. 2015; 137: 4614
  • 215 Neu HM. Baglia RA. Goldberg DP. Acc. Chem. Res. 2015; 48: 2754
  • 216 Baglia RA. Zaragoza JP. T. Goldberg DP. Chem. Rev. 2017; 117: 13320
  • 217 Coleman WM. Taylor LT. Inorg. Chim. Acta 1978; 30: L291
  • 218 Shook RL. Gunderson WA. Greaves J. Ziller JW. Hendrich MP. Borovik AS. J. Am. Chem. Soc. 2008; 130: 8888
  • 219 Coggins MK. Sun X. Kwak Y. Solomon EI. Rybak-Akimova E. Kovacs JA. J. Am. Chem. Soc. 2013; 135: 5631
  • 220 Kovacs JA. Acc. Chem. Res. 2015; 48: 2744
  • 221 Parsell TH. Behan RK. Green MT. Hendrich MP. Borovik AS. J. Am. Chem. Soc. 2006; 128: 8728
  • 222 MacBeth CE. Gupta R. Mitchell-Koch KR. Young VG. Jr. Lushington GH. Thompson WH. Hendrich MP. Borovik AS. J. Am. Chem. Soc. 2004; 126: 2556
  • 223 Deville C. Padamati SK. Sundberg J. McKee V. Browne WR. McKenzie CJ. Angew. Chem. Int. Ed. 2016; 55: 545
  • 224 Srour H. Le Maux P. Simonneaux G. Inorg. Chem. 2012; 51: 5850
    • 225a Talsi EP. Samsonenko DG. Bryliakov KP. ChemCatChem 2017; 9: 2599
    • 225b Talsi EP. Samsonenko DG. Ottenbacher RV. Bryliakov KP. ChemCatChem 2017; 9: 4580
    • 225c Hao B. Gunaratna MJ. Zhang M. Weerasekara S. Seiwald SN. Nguyen VT. Meier A. Hua DH. J. Am. Chem. Soc. 2016; 138: 16839
    • 225d Milan M. Bietti M. Costas M. ACS Cent. Sci. 2017; 3: 196
  • 226 Itoh S. Taki M. Nakao H. Holland PL. Tolman WB. Que LJr. Fukuzumi S. Angew. Chem. Int. Ed. 2000; 39: 398
  • 227 Taki M. Itoh S. Fukuzumi S. J. Am. Chem. Soc. 2001; 123: 6203
  • 228 Itoh S. Nakao H. Berreau LM. Kondo T. Komatsu M. Fukuzumi S. J. Am. Chem. Soc. 1998; 120: 2890
  • 229 Liu C.-C. Lin T.-S. Chan SI. Mou C.-Y. J. Catal. 2015; 322: 139
  • 230 Lucas HR. Li L. Sarjeant AA. N. Vance MA. Solomon EI. Karlin KD. J. Am. Chem. Soc. 2009; 131: 3230
  • 231 Würtele C. Sander O. Lutz V. Waitz T. Tuczek F. Schindler S. J. Am. Chem. Soc. 2009; 131: 7544
  • 232 Hsu YF. Yen MH. Cheng CP. J. Mol. Catal. A: Chem. 1996; 105: 137
  • 233 Navarro M. Escobar A. Landaeta VR. Visbal G. Lopez-Linares F. Luis ML. Fuentes A. Appl. Catal., A 2009; 363: 27
    • 234a Coltrin ME. Wu Y. US 4,202,992, 1980
    • 234b Coltrin ME. Wu Y. 1981 -US 4,269,734
  • 235 Andersson SL. T. J. Chem. Soc., Faraday Trans. 1992; 83
  • 236 Rudler H. Denise B. J. Mol. Catal. A: Chem. 2000; 154: 277
  • 237 Stec Z. Kulicki Z. Pol. J. Chem. 1983; 57: 941
  • 238 Zhang L. Ang GY. Chiba S. Org. Lett. 2011; 13: 1622
    • 239a Bolm C. Schlingloff G. Weickhardt K. Angew. Chem., Int. Ed. Engl. 1994; 33: 1848
    • 239b Peng Y. Feng X. Yu K. Li Z. Jiang Y. Yeung C.-H. J. Organomet. Chem. 2001; 619: 204
  • 240 Bolm C. Schlingloff G. J. Chem. Soc., Chem. Commun. 1995; 1247
  • 241 Bolm C. Luong TK. K. Schlingloff G. Synlett 1997; 1151
  • 242 Bolm C. Schlingloff G. Bienewald F. J. Mol. Catal. A: Chem. 1997; 117: 347
  • 243 Dewhurst F. Calcutt G. Nature (London) 1961; 191: 808
  • 244 Udenfriend S. Clark CT. Axelrod J. Brodie BB. J. Biol. Chem. 1954; 208: 731
  • 245 Dalgliesh CE. Arch. Biochem. Biophys. 1955; 58: 214
  • 246 Matsuura T. Tetrahedron 1977; 33: 2869
  • 247 Walling C. Acc. Chem. Res. 1975; 8: 125
  • 248 Sheldon RA. Kochi JK. Metal-Catalyzed Oxidations of Organic Compounds . Academic Press; New York: 1981. Chap. 10
  • 249 Evans MG. George P. Uri N. Trans. Faraday Soc. 1949; 45: 230
  • 250 Christiansen JA. Acta Chem. Scand. 1955; 9: 272
  • 251 Martell AE. Advances in Chemistry 1982; 7: 153
  • 252 Hamilton A. Workman RJ. Woo L. J. Am. Chem. Soc. 1964; 86: 3390
  • 253 Dearden MB. Jefcoate CR. E. Lindsay-Smith JR. Hydroxylation of Aromatic Compounds Induced by the Activation of Oxygen . In Oxidation of Organic Compounds III, ACS Advances in Chemistry Series 77. American Chemical Society; Washington DC: 1968: 260
  • 255 Bobst A. Viscontini M. Helv. Chim. Acta 1966; 49: 884
  • 256 Blair JA. Pearson AJ. J. Chem. Soc., Perkin Trans. 2 1975; 245
  • 257 Ménage S. Galey J.-B. Dumats J. Hussler G. Seité M. Luneau IG. Chottard G. Fontecave M. J. Am. Chem. Soc. 1998; 120: 13370
  • 258 Mehn MP. Fujisawa K. Hegg EL. Que LJr. J. Am. Chem. Soc. 2003; 125: 7828
  • 259 Hegg EL. Ho RY. N. Que LJr. J. Am. Chem. Soc. 1999; 121: 1972
  • 260 Mathieu D. Bartoli JF. Battioni P. Mansuy D. Tetrahedron 2004; 60: 3855
  • 261 Viscontini M. Mattern G. Helv. Chim. Acta 1970; 53: 372
  • 262 Hirose K. Ohkubo K. Fukuzumi S. Chem. Eur. J. 2016; 22: 12904
  • 263 Réglier M. Jorand C. Waegell B. J. Chem. Soc., Chem. Commun. 1990; 1752
  • 264 Casella L. Gullotti M. Radaelli R. Di Gennaro P. J. Chem. Soc., Chem. Commun. 1991; 1611
  • 265 Palavicini S. Granata A. Monzani E. Casella L. J. Am. Chem. Soc. 2005; 127: 18031
  • 266 Mirica LM. Vance M. Rudd DJ. Hedman B. Hodgson KO. Solomon EI. Stack TD. P. Science 2005; 308: 1890
  • 267 Garcia-Bosch I. Company A. Frisch JR. Torrent-Sucarrat M. Cardellach M. Gamba I. Güell M. Casella L. Que LJr. Ribas X. Luis JM. Costas M. Angew. Chem. Int. Ed. 2010; 49: 2406
  • 268 Rolff M. Schottenheim J. Peters G. Tuczek F. Angew. Chem. Int. Ed. 2010; 49: 6438
  • 269 Liu Q. Wu P. Yang Y. Zeng Z. Liu J. Yi H. Lei A. Angew. Chem. Int. Ed. 2012; 51: 4666
  • 270 Hoffmann A. Citek C. Binder S. Goos A. Rübhausen M. Troeppner O. Ivanović-Burmazović I. Wasinger EC. Stack TD. P. Herres-Pawlis S. Angew. Chem. Int. Ed. 2013; 52: 5398
  • 271 Herres-Pawlis S. Verma P. Haase R. Kang P. Lyons CT. Wasinger EC. Flörke U. Henkel G. Stack TD. P. J. Am. Chem. Soc. 2009; 131: 1154
  • 272 Mirica LM. Rudd DJ. Vance MA. Solomon EI. Hodgson KO. Hedman B. Stack TD. P. J. Am. Chem. Soc. 2006; 128: 2654
  • 273 Barbachyn MR. Johnson CR. Asymmetric Synthesis . Vol. 4. Morrison JD. Scott JW. Academic Press; Orlando: 1984: 221
  • 274 Posner GH. Acc. Chem. Res. 1987; 20: 72
  • 275 Drabowicz J. Kielbasinski P. Mikolajczyk M. The Chemistry of Sulphones and Sulphoxides . Patai S. Rappoport Z. Stirling C. John Wiley and Sons; Chichester: 1988. Chap. 16, 233
    • 276a Carreno MC. Chem. Rev. 1995; 95: 1717
    • 276b Prilezhaeva EN. Russ. Chem. Rev. 2000; 69: 367
    • 276c Ferber B. Kagan HB. Adv. Synth. Catal. 2007; 349: 493
    • 276d Nenajdenko G. Krasovskiy AL. Balenkova ES. Tetrahedron 2007; 63: 12481
    • 276e Carreño MC. Hernández-Torres G. Ribagorda M. Urbano A. Chem. Commun. 2009; 6129
    • 278a Egami H. Katsuki T. Synlett 2008; 1543
    • 278b Matsumoto K. Yamaguchi T. Katsuki T. Chem. Commun. 2008; 1704
    • 278c Yamaguchi T. Matsumoto K. Saito B. Katsuki T. Angew. Chem. Int. Ed. 2007; 46: 4729
  • 279 Tanaka H. Nishikawa H. Uchida T. Katsuki T. J. Am. Chem. Soc. 2010; 132: 12034
  • 280 Duboc-Toia C. Ménage S. Lambeaux C. Fontecave M. Tetrahedron Lett. 1997; 38: 3727
  • 281 Duboc-Toia C. Ménage S. Ho RY. H. Que LJr. Lambeaux C. Fontecave M. Inorg. Chem. 1999; 38: 1261
    • 282a Imagawa K. Nagata T. Yamada T. Mukaiyama T. Chem. Lett. 1995; 24: 335
    • 282b Nagata T. Imagawa K. Yamada T. Mukaiyama T. Bull. Chem. Soc. Jpn. 1995; 68: 3241
  • 283 Jung J. Ohkubo K. Prokop-Prigge KA. Neu HM. Goldberg DP. Fukuzumi S. Inorg. Chem. 2013; 52: 13594
  • 284 Gamba I. Palavicini S. Monzani E. Casella L. Chem. Eur. J. 2009; 15: 12932
  • 285 Garcia-Bosch I. Cowley RE. Díaz DE. Siegler MA. Nam W. Solomon EI. Karlin KD. Chem. Eur. J. 2016; 22: 5133
  • 286 Citek C. Lyons CT. Wasinger EC. Stack TD. P. Nat. Chem. 2012; 4: 317
  • 287 Gary JB. Citek C. Brown TA. Zare RN. Wasinger EC. Stack TD. P. J. Am. Chem. Soc. 2016; 138: 9986
  • 288 Taki M. Teramae S. Nagatomo S. Tachi Y. Kitagawa T. Itoh S. Fukuzumi S. J. Am. Chem. Soc. 2002; 124: 6367
  • 289 Gupta AK. Tolman WB. Inorg. Chem. 2012; 51: 1881
  • 290 Mukherjee P. Ph.D. Thesis . Stanford University; USA: 2000
    • 291a Iida H. Imada Y. Murahashi SI. Org. Biomol. Chem. 2015; 13: 7599
    • 291b Cibulka R. Eur. J. Org. Chem. 2015; 915
    • 291c de Gonzalo G. Fraaije MW. ChemCatChem 2013; 5: 403
    • 292a Anderson RF. In Flavins and Flavoproteins . Bray RC. Engel PC. Mayhew SE. DeGruyter; Berlin: 1984: 45
    • 292b Merenyi G. Lind J. J. Am. Chem. Soc. 1991; 113: 3146
    • 293a Modern Oxidation Methods . 2nd ed., Bäckvall J.-E. Wiley-VCH; Weinheim: 2010
    • 293b Berkessel A. Gröger H. In Asymmetric Organocatalysis . Wiley-VCH; Weinheim: 2005: 277
    • 293c Stingl KA. Tsogoeva SB. Tetrahedron: Asymmetry 2010; 21: 1055
    • 294a de Gonzalo G. Mihovilovic MD. Fraaije MW. ChemBioChem 2010; 11: 2208
    • 294b Holtmann D. Fraaije MW. Arends IW. C. E. Opperman DJ. Hollmann F. Chem. Commun. 2014; 50: 13180
  • 295 Imada Y. Iida H. Murahashi S.-I. Naota T. Angew. Chem. Int. Ed. 2005; 44: 1704
  • 296 Murahashi S.-I. Ono S. Imada Y. Angew. Chem. Int. Ed. 2002; 41: 2366
  • 297 Davison J. al Fahad A. Cai M. Song Z. Yehia SY. Lazarus CM. Bailey AM. Simpson TJ. Cox RJ. Proc. Natl. Acad. Sci. U.S.A. 2012; 109: 7642
  • 298 Chen S. Foss FW. Jr. Org. Lett. 2012; 14: 5150
  • 299 Imada Y. Iida H. Ono S. Murahashi S.-I. J. Am. Chem. Soc. 2003; 125: 2868
  • 300 Imada Y. Iida H. Ono S. Masui Y. Murahashi S.-I. Chem. Asian J. 2006; 1: 136
    • 301a Imada Y. Kitagawa T. Wang H.-K. Komiya N. Naota T. Tetrahedron Lett. 2013; 54: 621
    • 301b Murahashi S.-I. Zhang D. Iida H. Miyawaki T. Uenaka M. Murano K. Meguro K. Chem. Commun. 2014; 50: 10295
    • 302a Jurok R. Cibulka R. Dvořáková H. Hampl F. Hodačová J. Eur. J. Org. Chem. 2010; 5217
    • 302b Jurok R. Hodačová J. Eigner V. Dvořáková H. Setnička V. Cibulka R. Eur. J. Org. Chem. 2013; 7724
    • 303a Iida H. Iwahana S. Mizoguchi T. Yashima E. J. Am. Chem. Soc. 2012; 134: 15103
    • 303b Iida H. Iwahana S. Mizoguchi T. Yashima E. J. Am. Chem. Soc. 2012; 134: 18150
    • 304a Mojr V. Herzig V. Budĕšínský M. Cibulka R. Kraus T. Chem. Commun. 2010; 46: 7599
    • 304b Mojr V. Budĕšínský M. Cibulka R. Kraus T. Org. Biomol. Chem. 2011; 9: 7318
    • 304c Hartman T. Herzig V. Budĕšínský M. Jindřich J. Cibulka R. Kraus T. Tetrahedron: Asymmetry 2012; 23: 1571
  • 305 Arakawa Y. Yamanomoto K. Kita H. Minagawa K. Tanaka M. Haraguchi N. Itsuno S. Imada Y. Chem. Sci. 2017; 8: 5468
  • 306 Neveselý T. Svobodová E. Chudoba J. Sikorski M. Cibulka R. Adv. Synth. Catal. 2016; 358: 1654