Synlett 2018; 29(13): 1773-1775
DOI: 10.1055/s-0037-1610431
letter
© Georg Thieme Verlag Stuttgart · New York

Zirconium-Catalyzed Reaction of 1-Alkynyl Sulfides with Et3Al: A Novel Route to Trisubstituted 1-Alkenyl Sulfides

Rita N. Kadikova*
Institute of Petrochemistry and Catalysis of Russian Academy of Sciences, 141 Prospekt Oktyabrya, Ufa 450075, Russian Federation   Email: kadikritan@gmail.com
,
Ilfir R. Ramazanov
Institute of Petrochemistry and Catalysis of Russian Academy of Sciences, 141 Prospekt Oktyabrya, Ufa 450075, Russian Federation   Email: kadikritan@gmail.com
,
Alexey V. Vyatkin
Institute of Petrochemistry and Catalysis of Russian Academy of Sciences, 141 Prospekt Oktyabrya, Ufa 450075, Russian Federation   Email: kadikritan@gmail.com
,
Usein M. Dzhemilev
Institute of Petrochemistry and Catalysis of Russian Academy of Sciences, 141 Prospekt Oktyabrya, Ufa 450075, Russian Federation   Email: kadikritan@gmail.com
› Author Affiliations
This work was supported by the Russian Foundation for Basic ­Research (grant no. 16-33-60167, 18-03-00817 and 16-33-00403) and by a Grant of the RF President (Sci. Sh.-6651.2016.3).
Further Information

Publication History

Received: 14 May 2018

Accepted after revision: 22 May 2018

Publication Date:
21 June 2018 (online)


Abstract

The reaction of 1-alkynyl sulfides and alkynyl sulfoxides with Et3Al under zirconocene catalysis conditions has been studied. The interaction between 1-alkynyl sulfides and Et3Al in the presence of catalytic amounts of Cp2ZrCl2 leads to trisubstituted 1-alkenyl sulfides in moderate to good yields (56–73%) with high regioselectivity and stereo­selectivity. 1-Alkynyl sulfoxides, upon treatment with Et3Al under the same reaction conditions, undergoes reduction to give sulfides. The excess of Et3Al (7 equiv) in this reaction causes cyclic carboalumination of in situ generated 1-alkynyl sulfide to form trisubstituted 1-alkenyl sulfides in quantitative yield.

Supporting Information

 
  • References and Notes

  • 1 Dzhemilev UM. Ibragimov AG. Zolotarev AP. Mendeleev Commun. 1992; 2: 135
  • 2 Negishi E. Kondakov DY. D. Y. Choueiry D. Kasai K. Takahashi T. J. Am. Chem. Soc. 1996; 118: 9577
  • 3 Negishi E. Chem. Eur. J. 1999; 5: 411
  • 4 Negishi E. -i. Montchamp J.-L. Anastasia L. Elizarov A. Choueiry D. Tetrahedron Lett. 1998; 39: 2503
  • 5 Ramazanov IR. Kadikova RN. Dzhemilev UM. Russ. Chem. Bull. 2011; 60: 99
  • 6 Ramazanov IR. Kadikova RN. Saitova ZR. Dzhemilev UM. Asian J. Org. Chem. 2015; 4: 1301
  • 7 Ramazanov IR. Kadikova RN. Saitova ZR. Nadrshina ZI. Dzhemilev UM. Synlett 2016; 27: 2567
  • 8 Zyk NV. Beloglazkina EK. Belova MA. Dubinina NS. Russ. Chem. Rev. 2003; 72: 769
  • 9 Kondo T. Mitsudo T-a. Chem. Rev. 2000; 100: 3205
  • 10 Palani T. Park K. Song KH. Lee S. Adv. Synth. Catal. 2013; 355: 1160
  • 11 Downey CW. Craciun S. Neferu AM. Vivelo CA. Mueller CJ. Southall BC. Corsi S. Etchill EW. Sault RJ. Tetra­hedron Lett. 2012; 53: 5763
  • 12 (Z)-Butyl(2-cyclopropylbut-1-en-1-yl-1,4-d 2)sulfane (1a): Butyl(cyclopropylethynyl)sulfane (308 mg, 2 mmol) and Et3Al (0.9 mL, 8 mmol) were added to a suspension of Cp2ZrCl2 (116 mg, 0.4 mmol) in hexane (5 mL) under an argon atmosphere at 40 °C. After heating at 40 °C for 6 h, the reaction mixture was diluted with hexane (5 mL), and D2O (3 mL) was added dropwise while the reaction flask was cooled in an ice bath. The aqueous layer was extracted with diethyl ether (3 × 5 mL). The combined organic layers were washed with brine (10 mL), dried over anhydrous CaCl2, and the reaction mixture was filtered through filter paper. Evaporation of solvent and purification of the residue by column chromatography (petroleum ether) gave a colorless oil; yield: 260 mg (70%); Rf = 0.79 (petroleum ether). 1H NMR (400 MHz, CDCl3): δ = 0.52–0.58 (m, 2 Н, С(7,8)НAB), 0.68–0.75 (m, 2 Н, С(7,8)НA′B′), 0.95 (t, J = 7.4 Hz, 3 Н, С(11)Н3), 1.03 (t, J = 7.4 Hz, 2 Н, С(4)Н2D), 1.40–1.50 (m, 2 Н, С(10)Н2), 1.61–1.70 (m, 2 Н, С(9)Н2), 1.71–1.76 (m, 1 Н, С(6)Н), 1.77 (t, J = 7.5 Hz, 2 Н, С(3)Н2), 2.69 (t, J = 7.3 Hz, 2 Н, С(5)Н2). 13C NMR (100 MHz, CDCl3): δ = 4.84 (2C, C(7,8)), 13.01 (t, C(4), 1 J CD=19.4 Hz), 13.65 and 25.17 (C(3,6)), 13.69 (C(11)), 21.83 (C(10)), 32.35 (С(9)), 33.87 (C(5)), 140.87 (С(2)). MS (EI): m/z (%) = 186 (23) [M+], 128 (99), 112 (5), 96 (100), 80 (42), 67 (19), 41 (41). Anal. calcd for C11H18D2S: C, 70.90. Found: C, 70.94
  • 13 Ramazanov IR. Kadikova RN. Dzhemilev UM. Russ. J. Org. Chem. 2013; 49: 335
  • 14 Ramazanov IR. Kadikova RN. Zosim TP. Dzhemilev UM. Synthesis 2015; 47: 2670
  • 15 Kadikova RN. Zosim TP. Dzhemilev UM. Ramazanov IR. J. Organomet. Chem. 2014; 763–764: 14
  • 16 Takahashi T. Kondakov DY. Xi Z. Suzuki N. J. Am. Chem. Soc. 1995; 117: 5871
  • 17 Dzhemilev UM. Ibragimov AG. Gilyazev RR. Khafizova LO. Tetrahedron 2004; 60: 1281