Synthesis 2018; 50(19): 3825-3832
DOI: 10.1055/s-0037-1610434
short review
© Georg Thieme Verlag Stuttgart · New York

Synergistic Bimetallic Catalysis for Carboboration of Unsaturated Hydrocarbons

Eva Rivera-Chao
Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain   Email: martin.fananas@usc.es
,
Laura Fra
Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain   Email: martin.fananas@usc.es
,
Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain   Email: martin.fananas@usc.es
› Author Affiliations
Financial support from MINECO (RYC-2012-11749), Xunta de Galicia (ED431F 2016/006; GRC2014/032; Centro singular de investigación de Galicia accreditation 2016-2019, ED431G/09), and the European Union (European Regional Development Fund – ERDF) is gratefully acknowledged. M. F.-M. is grateful to MINECO for a Ramón y Cajal contract. E.R.-C. thanks Segundo Gil Dávila Foundation for a predoctoral grant.
Further Information

Publication History

Received: 27 April 2018

Accepted after revision: 27 May 2018

Publication Date:
09 July 2018 (online)


Abstract

Synergistic bimetallic catalysis has become a very efficient tool for the selective carboboration of unsaturated hydrocarbons. This synthetic approach is based on the use of a catalytically generated boron-substituted organocopper nucleophile in a cross-coupling reaction catalyzed by a second transition metal. This way, hydrocarbons can be used as pro-nucleophiles in this type of transformations thus rendering a clean and operationally simple alternative to the traditional cross-coupling methodologies. This review provides a summary of the developments on this topic and discusses both the synthetic utility and mechanisms of these reactions.

1 Introduction

2 Carboboration of Alkenes via Synergistic Catalysis

3 Carboboration of 1,3-Dienes via Synergistic Catalysis

4 Carboboration of Alkynes via Synergistic Catalysis

5 Conclusions

 
  • References

    • 1a Negishi E. Angew. Chem. Int. Ed. 2011; 50: 6738
    • 1b Johansson Seechurn CC. C. Kitching MO. Colacot TJ. Snieckus V. Angew. Chem. Int. Ed. 2012; 51: 5062
    • 2a Stille JK. Angew. Chem. Int. Ed. 1986; 25: 508
    • 2b Espinet P. Echavarren AM. Angew. Chem. Int. Ed. 2004; 43: 4704
    • 3a Miyaura N. Suzuki A. Chem. Rev. 1995; 95: 2457
    • 3b Suzuki A. Angew. Chem. Int. Ed. 2011; 50: 6722
    • 3c Shi Y. Jung B. Torker S. Hoveyda AH. J. Am. Chem. Soc. 2015; 137: 8948
    • 4a Knochel P. Singer RD. Chem. Rev. 1993; 93: 2117
    • 4b Phapale VB. Cárdenas DJ. Chem. Soc. Rev. 2009; 38: 1598
    • 4c Kacprzynski MA. May TL. Kazane SA. Hoveyda AH. Angew. Chem. Int. Ed. 2007; 46: 4554
    • 6a Tamao K. Sumitani K. Kumada M. J. Am. Chem. Soc. 1972; 94: 4374
    • 6b Knappe CE. I. von Wangelin AJ. Chem. Soc. Rev. 2011; 40: 4948
    • 6c Alexakis A. Bäckvall JE. Krause N. Pámies O. Diéguez M. Chem. Rev. 2008; 108: 2796
    • 6d Harutyunyan SR. den Hartog T. Geurts K. Minnaard AJ. Feringa BL. Chem. Rev. 2008; 108: 2824
    • 7a Lee Y. Akiyama K. Gillingham D. Brown MK. Hoveyda AH. J. Am. Chem. Soc. 2008; 130: 446
    • 7b Dabrowski JA. Gao F. Hoveyda AH. J. Am. Chem. Soc. 2011; 133: 4778
    • 8a Murahashi S. Yamamura M. Yanagisawa K. Mita N. Kondo K. J. Org. Chem. 1979; 44: 2408
    • 8b Pérez M. Fañanás-Mastral M. Bos PH. Rudolph A. Harutyunyan SR. Feringa BL. Nat. Chem. 2011; 3: 377
    • 8c Giannerini M. Fañanás-Mastral M. Feringa BL. Nat. Chem. 2013; 5: 667
    • 9a Ito H. Yamanaka H. Tateiwa J. Hosomi A. Tetrahedron Lett. 2000; 41: 6821
    • 9b Takahashi K. Ishiyama T. Miyaura N. J. Organomet. Chem. 2001; 625: 47
    • 9c Laitar DS. Müller P. Sadighi JP. J. Am. Chem. Soc. 2005; 127: 17196
    • 10a Laitar DS. Tsui EY. Sadighi JP. Organometallics 2006; 25: 2405
    • 10b Dang L. Zhao H. Lin Z. Marder TB. Organometallics 2007; 26: 2824
    • 10c Zhang L. Cheng J. Carry B. Hou Z. J. Am. Chem. Soc. 2012; 134: 14314
    • 10d Semba K. Shinomiya M. Fujihara T. Terao J. Tsuji Y. Chem. Eur. J. 2013; 19: 7125

    • For reviews on the reactivity of borylcopper complexes towards unsaturated compounds, see:
    • 10e Semba K. Fujihara T. Terao J. Tsuji Y. Tetrahedron 2015; 71: 2183
    • 10f Neeve EC. Geier SJ. Mkhalid IA. I. Westcott SA. Marder TB. Chem. Rev. 2016; 116: 9091

      For some examples, see:
    • 11a Alfaro R. Parra A. Alemán J. García Ruano JL. Tortosa M. J. Am. Chem. Soc. 2012; 134: 15165
    • 11b Yoshida H. Kageyuki I. Takaki K. Org. Lett. 2013; 15: 952
    • 11c Liu P. Fukui Y. Tian P. He Z.-T. Sun C.-Y. Wu N.-Y. Lin G.-Q. J. Am. Chem. Soc. 2013; 135: 11700
    • 11d Meng F. McGrath KP. Hoveyda AH. Nature 2014; 513: 367
    • 11e Zhou Y. You W. Smith KB. Brown MK. Angew. Chem. Int. Ed. 2014; 53: 3475
    • 11f Su W. Gong T.-J. Lu X. Xu M.-Y. Yu C.-G. Xu Z.-Y. Yu H.-Z. Xiao B. Fu Y. Angew. Chem. Int. Ed. 2015; 54: 12957
    • 11g Bin H.-Y. Wei X. Zi J. Zuo Y.-J. Wang T.-C. Zhong C.-M. ACS Catal. 2015; 5: 6670
    • 11h Itoh T. Shimizu Y. Kanai M. J. Am. Chem. Soc. 2016; 138: 7528
    • 11i Kim N. Han JT. Ryu DH. Yun J. Org. Lett. 2017; 19: 6144
    • 11j Chen B. Cao P. Liao Y. Wang M. Liao J. Org. Lett. 2018; 20: 1346

      For pioneering work on cooperative Cu/Pd catalysis, see:
    • 12a Sonogashira K. Tohda Y. Hagihara N. Tetrahedron Lett. 1975; 4467
    • 12b Liebeskind LS. Fengl RW. J. Org. Chem. 1990; 55: 5359

    • For reviews on synergistic catalysis, see:
    • 12c Allen AE. MacMillan DW. C. Chem. Sci. 2012; 3: 633
    • 12d Pye DR. Mankad NP. Chem. Sci. 2017; 8: 1705
    • 12e Lorion MM. Maindan K. Kapdi AR. Ackermann L. Chem. Soc. Rev. 2017; 46: 7399

      For related transformations using CuH/Pd catalysis, see:
    • 13a Semba K. Ariyama K. Zheng H. Kameyama R. Sakaki S. Nakao Y. Angew. Chem. Int. Ed. 2016; 55: 6275
    • 13b Friis SD. Pirnot MT. Buchwald SL. J. Am. Chem. Soc. 2016; 138: 8372
    • 13c Friis SD. Pirnot MT. Dupuis LN. Buchwald SL. Angew. Chem. Int. Ed. 2017; 56: 7242

    • For carbosilylation processes, see:
    • 13d Vercruysse S. Cornelissen L. Nahra F. Collard L. Riant O. Chem. Eur J. 2014; 20: 1834
    • 13e Shintani R. Kurata H. Nozaki K. J. Org. Chem. 2016; 81: 3065
    • 13f Takeda M. Yabushita K. Yasuda S. Ohmiya H. Chem. Commun. 2018; 54: 6776

    • For other types of transformations involving synergistic catalysis, see:
    • 13g Goossen L. Deng G. Levy LM. Science 2006; 313: 662
    • 13h Huang J. Chan J. Chen Y. Borths CJ. Baucom KD. Larsen RD. Faul MM. J. Am. Chem. Soc. 2010; 132: 3674
    • 13i Wei L. Xu S.-M. Zhu Q. Che C. Wang C.-J. Angew. Chem. Int. Ed. 2017; 56: 12312
  • 14 Semba K. Nakao Y. J. Am. Chem. Soc. 2014; 136: 7567
  • 15 Smith KB. Logan KM. You W. Brown MK. Chem. Eur. J. 2014; 20: 12032
  • 16 Logan KM. Smith KB. Brown MK. Angew. Chem. Int. Ed. 2015; 54: 5228
  • 17 Logan KM. Brown MK. Angew. Chem. Int. Ed. 2017; 56: 851
  • 18 Chen B. Cao P. Yin X. Liao Y. Jiang L. Ye J. Wang M. Liao J. ACS Catal. 2017; 7: 2425
  • 19 Jia T. Cao P. Wang B. Lou Y. Yin X. Wang M. Liao J. J. Am. Chem. Soc. 2015; 137: 13760
  • 20 Semba K. Ohtagaki Y. Nakao Y. Org. Lett. 2016; 18: 3956
  • 21 Smith KB. Brown MK. J. Am. Chem. Soc. 2017; 139: 7721
  • 22 Sardini SR. Brown MK. J. Am. Chem. Soc. 2017; 139: 9823
  • 23 Semba K. Nakao Y. Bull. Chem. Soc. Jpn. 2017; 90: 1340
  • 24 Lesieur M. Bidal YD. Lazreg F. Nahra F. Cazin CS. J. ChemCatChem 2015; 7: 2108
  • 25 Mateos J. Rivera-Chao E. Fañanás-Mastral M. ACS Catal. 2017; 7: 5340