Synthesis 2018; 50(23): 4627-4636
DOI: 10.1055/s-0037-1610536
paper
© Georg Thieme Verlag Stuttgart · New York

Copper-Catalyzed Intermolecular Thioamination of Maleimides with Thiols and Formamides: A One-Step Construction of 3-Amino-4-thiomaleimides Using Formamides as Nitrogen Sources

Zhen-Hua Yang
a   Department of Chemistry, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, P. R. of China   Email: syzhao8@dhu.edu.cn
,
Jia-Nan Zhu
a   Department of Chemistry, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, P. R. of China   Email: syzhao8@dhu.edu.cn
,
Ze-Hui Jin
a   Department of Chemistry, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, P. R. of China   Email: syzhao8@dhu.edu.cn
,
Jian Zheng
a   Department of Chemistry, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, P. R. of China   Email: syzhao8@dhu.edu.cn
,
Sheng-Yin Zhao*
a   Department of Chemistry, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, P. R. of China   Email: syzhao8@dhu.edu.cn
b   State Key Laboratory of Bioorganic & Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. of China
› Author Affiliations
The authors acknowledge financial support from Shanghai Municipal Natural Science Foundation (No. 15ZR1401400), the Fundamental Research Funds for the Central Universities from the Ministry of Education of China (CUSF-DH-D-2015048 and CUSF-DH-D-2016028) and the National Innovation Experiment Program for University Students (17T10507) for financial support.
Further Information

Publication History

Received: 21 April 2018

Accepted after revision: 29 June 2018

Publication Date:
07 August 2018 (online)


Abstract

A highly efficient copper-catalyzed intermolecular C(sp2)–H thioamination of maleimides with thiols and formamides in the presence of fluoroboric acid is reported using various readily available formamides as nitrogen sources and solvents. A diverse range of 3-amino-4-thiomaleimides is obtained with good yields under mild conditions, involving C–N and C–S bond formation. This methodology enriches current C–N and C–S bond formation chemistry and features operational simplicity and excellent functional-group tolerance.

Supporting Information

 
  • References

    • 1a Wu M.-D. Cheng M.-J. Wang B.-C. Yech Y.-J. Lai J.-T. Kuo Y.-H. Yuan G.-F. Chen I.-S. J. Nat. Prod. 2008; 71: 1258
    • 1b Selles P. Org. Lett. 2005; 7: 605
    • 1c Bin JW. Wong IL. K. Hu X. Yu ZX. Xing LF. Jiang T. Chow LM. C. Biao WS. J. Med. Chem. 2013; 56: 9057
    • 1d Gunosewoyo H. Midzak A. Gaisina IN. Sabath EV. Fedolak A. Hanania T. Brunner D. Papadopoulos V. Kozikowski AP. J. Med. Chem. 2013; 56: 5115
    • 2a Zhang Z. Han S. Tang M. Ackermann L. Li J. Org. Lett. 2017; 19: 3315
    • 2b Sati GC. Crich D. Org. Lett. 2015; 17: 4122
    • 2c Liu J. Zhang H.-R. Lin X.-R. Yan S.-J. Lin J. RSC Adv. 2014; 4: 27582
    • 2d Marsh BJ. Adams H. Barker MD. Kutama IU. Jones S. Org. Lett. 2014; 16: 3780
    • 3a Hu W. Zheng J. Li J. Liu B. Wu W. Liu H. Jiang H. J. Org. Chem. 2016; 81: 12451
    • 3b Zhu C. Xu G. Ding D. Qin L. Sun J. Org. Lett. 2015; 17: 4244
    • 4a Tarnavskiy SS. Dubinina GG. Golovach SM. Yarmoluk SM. Biopolim. Klitina 2003; 19: 287
    • 4b Simonov AY. Lakatosh SA. Luzikov YN. Reznikova MI. Susova OY. Shtil’ AA. Elizarov SM. Danilenko VN. Preobrazhenskaya MN. Russ. Chem. Bull. 2008; 57: 2011
    • 4c Michejda CJ. Christopher J. Yao W. Carr BI. Kar S. Michejda M. US 20080039518, 2008 2008; 148, 239021
    • 4d Riggs R. Dietz J. Grammenos W. Mueller B. Lohmann JK. Boudet N. Craig IR. Haden E. Montag J. WO2012143468, 2012 ; Chem. Abstr. 2012, 157, 625845
    • 5a Shen C. Zhang P. Sun Q. Bai S. Hor TS. A. Liu X. Chem. Soc. Rev. 2015; 44: 291
    • 5b Guo X.-X. Gu D.-W. Wu Z. Zhang W. Chem. Rev. 2015; 115: 1622
    • 6a Wendlandt AE. Suess AM. Stahl SS. Angew. Chem. Int. Ed. 2011; 50: 11062 ; Angew. Chem. 2011, 123, 11256
    • 6b King AE. Huffman LM. Casitas A. Costas M. Ravi X. Stahl SS. J. Am. Chem. Soc. 2010; 132: 12068
    • 6c Xie J. Huang Y. Song H. Liu Y. Wang Q. Org. Lett. 2017; 19: 6056
    • 6d Zhou W. Fan W. Jiang Q. Liang Y.-F. Jiao N. Org. Lett. 2015; 17: 2542
    • 6e Huang H. Cai J. Ji X. Xiao F. Chen Y. Deng G.-J. Angew. Chem. Int. Ed. 2016; 55: 307 ; Angew. Chem. 2016, 128, 315
    • 6f Cao W.-B. Chu X.-Q. Zhou Y. Yin L. Xu X.-P. Ji S.-J. Chem. Commun. 2017; 53: 6601
  • 7 Ding S. Jiao N. Angew. Chem. Int. Ed. 2012; 51: 9226 ; Angew. Chem. 2012, 124, 9360
    • 8a Cho SH. Kim JY. Lee SY. Chang S. Angew. Chem. Int. Ed. 2009; 48: 9127 ; Angew. Chem. 2009, 121, 9291
    • 8b Huang X. Wang J. Ni Z. Wang S. Pan Y. Chem. Commun. 2014; 50: 4582
    • 8c Yang L. Lin J. Kang L. Zhou W. Ma D.-Y. Adv. Synth. Catal. 2018; 360: 485
    • 9a Yang Z.-H. Tan H.-R. Zhu J.-N. Zheng J. Zhao S.-Y. Adv. Synth. Catal. 2018; 360: 1523
    • 9b Yang Z.-H. An Y.-L. Chen Y. Shao Z.-Y. Zhao S.-Y. Adv. Synth. Catal. 2016; 358: 3869
    • 9c An Y.-L. Yang Z.-H. Zhang H.-H. Zhao S.-Y. Org. Lett. 2016; 18: 152
    • 9d Yang Z.-H. Tan H.-R. An Y.-L. Zhao Y.-W. Lin H.-P. Zhao S.-Y. Adv. Synth. Catal. 2018; 360: 173
    • 10a Igarashi Y. Watanabe N. Fujita T. Sakamoto M. Watanabe S. Nippon Kagaku Kaishi 1993; 10: 1198
    • 10b Igarashi Y. Watanabe S. Nippon Kagaku Kaishi 1990; 11: 1284
    • 10c Igarashi Y. Watanabe S. J. Ind. Microbiol. 1992; 9: 91
    • 10d Igarashi Y. Watanabe S. Nippon Kagaku Kaishi 1992; 11: 1392
  • 11 CCDC 1556730 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
    • 12a Yang Y. Shu WM. Yu SB. Ni F. Gao M. Wu AX. Chem. Commun. 2013; 49: 1729
    • 12b Yang Y. Ni F. Shu WM. Yu SB. Gao M. Wu AX. J. Org. Chem. 2013; 78: 5418
    • 12c Manna MS. Mukherjee S. Chem. Sci. 2014; 5: 1627
  • 13 McCann SD. Stahl SS. Acc. Chem. Res. 2015; 48: 1756
    • 14a Schirok H. Alonso-Alija C. Benet-Buchholz J. Goller AH. Grosser R. Michels M. Paulsen H. J. Org. Chem. 2005; 70: 9463
    • 14b Ono N. Kamimura A. Kaji A. J. Org. Chem. 1986; 51: 2139
    • 14c Hojo M. Masuda R. Okada E. Sakaguchi S. Narumiya H. Morimoto K. Tetrahedron Lett. 1989; 30: 6173
    • 15a Allen SE. Walvoord RR. Padilla-Salinas R. Kozlowski MC. Chem. Rev. 2013; 113: 6234
    • 15b Zhu H. Yu J.-T. Cheng J. Chem. Commun. 2016; 52: 11908
    • 15c Taniguchi N. J. Org. Chem. 2006; 71: 7874
    • 16a Li Z. Hong JQ. Zhou XG. Tetrahedron 2011; 67: 3690
    • 16b Wan JP. Zhong SS. Xie LL. Cao XJ. Liu YY. Wei L. Org. Lett. 2016; 18: 584
    • 17a Taniguchi N. Eur. J. Org. Chem. 2014; 5691
    • 17b Jiang YJ. Liang GH. Zhang C. Loh TP. Eur. J. Org. Chem. 2016; 3326
  • 18 Talla A. Driessen B. Straathof NJ. W. Milroy L.-G. Brunsveld L. Hessel V. Noül T. Adv. Synth. Catal. 2015; 357: 2180
  • 19 White JE. J. Polym. Sci.: Polym. Chem. Ed. 1987; 25: 1191
  • 20 Patil NS. Deshmukh GB. Mahale KA. Gosavi KS. Patil SV. Indian J. Chem. Sect. B: Org. Chem. Incl. Med. Chem. 2015; 54: 272
  • 21 Mustafa A. Asker W. Khattab S. Zayed SM. A. D. J. Org. Chem. 1961; 26: 787