Synthesis 2019; 51(07): 1680-1688
DOI: 10.1055/s-0037-1610675
paper
© Georg Thieme Verlag Stuttgart · New York

Palladium-Catalyzed Carbonylation of Coumarin C(sp2)–H Bonds: A New Entry to Arylcoumarin Ketones

Siyavash Mirzaei
a   Department of Genetics, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
,
Saideh Rajai-Daryasarei
b   School of Chemistry, College of Science, University of Tehran, Tehran, Iran
,
Mehdi Soheilizad
c   CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Karaj, Iran
,
Roya Kabiri
d   NMR Lab, Faculty of Chemistry, Tabriz University, Tabriz, Iran
,
Samira Ansari
c   CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Karaj, Iran
,
Meisam Shabanian
e   Faculty of chemistry and petrochemical engineering, Standard Research Institute (SRI) Karaj, Karaj, Iran
,
f   SOHA Pharmaceutical company, Karaj, Iran   Email: pashazadeh.rahim@yahoo.com
› Author Affiliations
We acknowledge the financial support from the SOHA pharmaceutical company and University of Tehran.
Further Information

Publication History

Received: 30 October 2018

Accepted after revision: 05 November 2018

Publication Date:
19 December 2018 (online)


Abstract

A facile and efficient palladium-catalyzed carbonylation of coumarins involving two C–C bond formations has been developed. The C–H bond oxidative functionalization proceeds through aroylation with insertion of carbon monoxide to give arylcoumarin ketones. The reaction conditions, employing ambient pressures of CO gas as C1 feedstock, dramatically improve the generality of the carbonylation of aryl halides.

Supporting Information

 
  • References

  • 1 Murray RD. H. Prog. Chem. Org. Nat. Prod. 2002; 83: 1
  • 2 Gao S, Tsai CH, Tseng C, Yao C.-F. Tetrahedron 2008; 64: 9143
    • 3a Belluti F, Fontana G, Bo L, Carenini N, Giommarelli C, Zunino F. Bioorg. Med. Chem. 2010; 18: 3543
    • 3b Riveiro ME, Moglioni A, Vazquez R, Gomez N, Facorro G, Piehl L, de Celis ER, Shayo C, Davio C. Bioorg. Med. Chem. 2008; 16: 2665
  • 4 Tanabe A, Nakashima H, Yoshida O, Yamamoto N, Tenmyo O, Oki T. J. Antibiot. 1988; 41: 1708
    • 5a Fylaktakidou KC, Hadjipavlou-Litina DJ, Litinas KE, Nicolaides DN. Curr. Pharm. Des. 2004; 10: 3813
    • 5b Roussaki M, Kontogiorgis C, Hadjipavlou-Litina DJ, Hamilakis S. Bioorg. Med. Chem. Lett. 2010; 20: 3889
  • 6 Morgan LR, Jursic BS, Hooper CL, Neumann DM, Thangaraj K, Leblance B. Bioorg. Med. Chem. Lett. 2002; 12: 3407
  • 7 Vilar S, Quezada E, Santana L, Uriarte E, Yanez M, Fraiz N, Alcaide C, Cano E, Orallo F. Bioorg. Med. Chem. Lett. 2006; 16: 257
  • 8 Kostova I. Curr. HIV Res. 2006; 4: 347
    • 9a Chilin A, Battistutta R, Bortolato A, Cozza G, Zanatta S, Poletto G, Mazzorana M, Zagotto G, Uriarte E, Guiotto A, Meggio F, Moro S. J. Med. Chem. 2008; 51: 752
    • 9b Zhou X, Wang XB, Wang T, Kong LY. Bioorg. Med. Chem. 2008; 16: 8011
  • 10 Balaji PN, Lakshmi LK, Mohan K, Revathi K, Chamundeswari A, Indrani PM. Der Pharmacia Sinica 2012; 3: 685
  • 11 Morgan LR, Jursic BS, Hooper CL, Neumann DM, Thangaraj K, Leblance B. Bioorg. Med. Chem. Lett. 2002; 12: 3407
  • 12 Bayer TA, Schafer S, Breyh H, Breyhan O, Wirths C, Treiber GA. Clin. Neuropathol. 2006; 25: 163
  • 13 Bonsignore L, Loy G, Secci D, Calignano A. Eur. J. Med. Chem. 1993; 28: 517
    • 14a Augustine RL. Carbon–Carbon Bond Formation . Dekker. Ed. New York, 1979; Vol. 1;
    • 14b Bunceland E, Durst T. Comprehensive Carbanion Chemistry, Part B . Elsevier; Amsterdam: 1984
    • 14c Trost BM, Fleming I. Comprehensive Organic Synthesis . Pergamon, Ed.; Oxford: 1991. Vol. 3
    • 15a Brown JM, Cooley NA. Chem. Rev. 1988; 88: 1031
    • 15b Li C.-J. Chem. Rev. 1993; 93: 2023
    • 16a Meijere AD, Diederich F. Metal-Catalyzed Cross-Coupling Reactions, 2nd ed. . Wiley-VCH; Weinheim: 2004
    • 16b Luh T.-Y, Leung M.-K, Wong K.-T. Chem. Rev. 2000; 100: 3187
    • 17a Tsuji J. Palladium Reagents and Catalysts: Innovations in Organic Synthesis. Wiley; Chichester: 1995
    • 17b Seechurn CC. C. J, Kitching M, Colacot O, Snieckus V. Angew. Chem. Int. Ed. 2012; 51: 5062
    • 17c Miyaura N, Suzuki A. Chem. Rev. 1995; 95: 2457
    • 18a Beller M, Wu X.-F. Transition-Metal Catalyzed Carbonylation Reactions: Carbonylative Activation of C–X Bonds. Springer; Amsterdam: 2013
    • 18b Beller M. Catalytic Carbonylation Reactions . Springer; Berlin: 2006
    • 18c Kollär L. Modern Carbonylation Methods . Wiley-VCH; Weinheim: 2008
    • 18d Liang Z, Zhang J, Liu Z, Wang K, Zhang Y. Tetrahedron 2013; 69: 6519
    • 18e Konishi H, Manabe K. Synlett 2014; 25: 1971
    • 18f Dong K, Sang R, Liu J, Razzaq R, Franke R, Jackstell R, Beller M. Angew. Chem. Int. Ed. 2017; 56: 1
    • 19a Tsuji J, Morikawa M, Iwamoto N. J. Am. Chem. Soc. 1964; 86: 2095
    • 19b Tsuji J, Takahashi M, Takahashi T. Tetrahedron Lett. 1980; 21: 849
    • 19c Yamamoto Y. Adv. Synth. Catal. 2010; 352: 478
    • 19d Zhou QJ, Worm K, Dolle RE. J. Org. Chem. 2004; 69: 5147
    • 19e Guan Z.-H, Chen M, Ren Z.-H. J. Am. Chem. Soc. 2012; 134: 17490
    • 19f Ferguson J, Zeng F, Alwis N, Alper H. Org. Lett. 2013; 15: 1998
    • 19g Baburajan P, Elango KP. Tetrahedron Lett. 2014; 55: 3525
    • 19h Kadnikov DV, Larock RC. Org. Lett. 2000; 2: 3643
    • 19i Takács A, Marosvölgy-Hasko D, Kabak-Solt Z, Damas L, Rodrigues FM. S, Carrilho RM. B, Pineiro M, Pereira MM, Kollár L. Tetrahedron 2016; 72: 247
    • 19j Han W, Jin F, Zhou Q. Synthesis 2015; 47: 1861
    • 19k Tjutrins J, Arndtsen BA. J. Am. Chem. Soc. 2015; 137: 12050
    • 19l Wu X.-F, Anbarasan P, Neumann H, Beller M. Angew. Chem. Int. Ed. 2010; 49: 7316
    • 20a Martinelli JR, Freckmann DM, Buchwald SL. Org. Lett. 2006; 8: 4843
    • 20b Martinelli JR, Clark TP, Watson DA, Munday RH, Buchwald SL. Angew. Chem. Int. Ed. 2007; 46: 8460
    • 20c Zhang S, Wang L, Feng X, Bao M. Org. Biomol. Chem. 2014; 12: 7233
    • 20d Zhang C, Liu J, Xia C. Org. Biomol. Chem. 2014; 12: 9702
    • 20e Chen J, Natte K, Spannenberg A, Neumann H, Beller M, Wu X.-F. Org. Biomol. Chem. 2014; 12: 5578
  • 21 Rahman O, Kihlberg T, Långström B. J. Org. Chem. 2003; 68: 3558
    • 22a Reeves DC, Rodriguez S, Lee H, Haddad N, Krishnamurthy D, Senanayake CH. Org. Lett. 2011; 13: 2495
    • 22b Munday RH, Martinelli JR, Buchwald SL. J. Am. Chem. Soc. 2008; 130: 2754
    • 22c Cacchi S, Morera E, Ortar G. Tetrahedron Lett. 1985; 26: 1109
  • 23 Lagerlund O, Mantel ML, Larhed M. Tetrahedron 2009; 65: 7646
    • 24a Ouyang K, Hao W, Xi WX, Zhang Z. Chem. Rev. 2015; 115: 12045
    • 24b Hu J, Zhao Y, Liu J, Zhang Y, Shi Z. Angew. Chem. Int. Ed. 2016; 55: 8718
    • 24c Liang A, Han S, Wang L, Li J, Zou D, Wu Y, Wu Y. Adv. Synth. Catal. 2015; 357: 3104
    • 24d Li W, Wu X.-F. Org. Lett. 2015; 17: 1910
    • 25a Adib M, Rajai-Daryasarei S, Pashazadeh R, Tajik M, Mirzaei P. Tetrahedron Lett. 2016; 57: 3701
    • 25b Adib M, Pashazadeh R, Rajai-Daryasarei S, Kabiri R, Jahani M. RSC Adv. 2016; 6: 110656
  • 26 Arroniz C, Denis JG, Ironmonger A, Rassias G, Larrosa I. Chem. Sci. 2014; 5: 3509
  • 27 Frolova LV, Malik I, Uglinskii PY, Rogelj S, Kornienko A, Magedov IV. Tetrahedron Lett. 2011; 52: 6643
    • 28a Kotali A, Nasiopolou DA, Harris PA, Helliwell M, Joule JA. Tetrahedron 2012; 68: 761
    • 28b Jafarpor F, Abbasnia M. J. Org. Chem. 2016; 81: 11982
    • 28c Yuan JW, Yin QY, Yang LR, Mai WP, Mao P, Xiao YM, Qu LB. RSC Adv. 2015; 5: 88258
    • 28d Zhao W, Xu L, Ding Y, Niu B, Xie P, Bian Z, Zhang D, Zhou A. Eur. J. Org. Chem. 2016; 325
    • 28e Specht DP, Martit PA, Farid S. Tetrahedron 1982; 38: 1203
    • 28f Jang Y.-J, Syu S.-E, Chen Y.-J, Yang M.-C, Lin W. Org. Biomol. Chem. 2012; 10: 843