Synthesis 2019; 51(12): 2532-2541
DOI: 10.1055/s-0037-1610704
special topic
© Georg Thieme Verlag Stuttgart · New York

Ruthenium-Catalyzed [2+2+2] Cycloaddition of α,ω-Diynes and Selenocyanates: An Entry to Selenopyridine Derivatives

Christine Tran
,
Mansour Haddad
,
PSL Research University, Chimie ParisTech, CNRS, Institute of Chemistry for Life and Health Sciences, 11 rue Pierre et Marie Curie, Paris, 75005, France   Email: virginie.vidal@chimie-paristech.fr
› Author Affiliations
Further Information

Publication History

Received: 13 March 2019

Accepted after revision: 14 March 2019

Publication Date:
10 April 2019 (online)


Published as part of the Special Topic Ruthenium in Organic Synthesis

Abstract

A novel synthetic method for the preparation of selenopyridine derivatives, involving a [2+2+2] cycloaddition of α,ω-diynes and selenocyanates that is catalyzed by a ruthenium complex is described. This mild and straightforward reaction allows access to a wide range of selenopyridines with high yields and excellent regioselectivities, using dichloromethane or dichloroethane as solvents, at either 50 or 80 °C. Post-functionalization of halogenated cycloadducts via cyanation using copper and SNAr reaction provides substituted selenopyridines with good yields.

Supporting Information

 
  • References

  • 1 Marini F, Sternativo S. Synlett 2013; 24: 11
  • 2 Kim HS, Kim YJ, Lee H, Park KY, Lee C, Chin CS. Angew. Chem. Int. Ed. 2002; 41: 4300
  • 3 Freitas CS, Barcellos AM, Ricordi VG, Pena JM, Perin G, Jacob RG, Lenardão EJ, Alves D. Green Chem. 2011; 13: 2931
  • 4 Khan MN, Karamthulla S, Choudhury LH, Faizi MS. H. RSC Adv. 2015; 5: 22168
  • 5 Nogueira CW, Rocha JB. T. J. Braz. Chem. Soc. 2010; 21: 2055
  • 6 Dawson DA, Masayasu H, Graham DI, Macrae IM. Neurosci. Lett. 1995; 185: 65
  • 7 Yamaguchi T, Sano K, Takakura K, Saito I, Shinohara Y, Asano T, Yasuhara H. Stroke 1998; 29: 12
  • 8 Singh N, Halliday AC, Thomas JM, Kuznetsova OV, Baldwin R, Woon EC. Y, Aley PK, Antoniadou I, Sharp T, Vasudevan SR, Churchill GC. Nat. Commun. 2013; 4: 1332
  • 9 Moutet M, D’Alessio P, Malette P, Devaux V, Chaudiere J. Free Radical Biol. Med. 1998; 25: 270
  • 10 Wray SK, Smith RH, Gilbert BE, Knight V. Antimicrob. Agents Chemother. 1986; 29: 67
  • 11 Millois C, Diaz P. Org. Lett. 2000; 2: 1705
  • 12 Tiecco M, Testafurri L, Tingoli M, Chianelli D, Bartoli D, Balducci R. Tetrahedron 1988; 44: 4883
  • 13 Ma X, Liu Q, Jia X, Su C, Xu Q. RSC Adv. 2016; 6: 56930
  • 14 Taniguchi N, Onami T. Synlett 2003; 829
  • 15 Li Y, Wang H, Li X, Chen T, Zhao D. Tetrahedron 2010; 66: 8583
  • 16 Varala R, Ramu E, Adapa SR. Bull. Chem. Soc. Jpn. 2006; 79: 140
  • 17 Goldani B, Ricordi VG, Seus N, Lenardão EJ, Schumacher RF, Alves D. J. Org. Chem. 2016; 81: 11472
  • 18 Bhasin KK, Bhandal BS, Singh J, Singh N, Singh KN, Singh P. Synth. Commun. 2002; 32: 1319
  • 19 Heller B, Hapke M. Chem. Soc. Rev. 2007; 36: 1085
  • 20 Varela JA, Saá C. Synlett 2008; 2571
  • 21 Domínguez G, Pérez-Castells J. Chem. Soc. Rev. 2011; 40: 3430
  • 22 Broere DL, Ruijter E. Synthesis 2012; 44: 2639
  • 23 Tanaka K. Heterocycles 2012; 85: 1017
    • 24a Bönnemann H, Brijoux W, Brinkmann R, Meurers W. Helv. Chim. Acta 1984; 67: 1616
    • 24b Heller B, Reihsig J, Schulz W, Oehme G. Appl. Organomet. Chem. 1993; 7: 641
    • 24c Fatland AW, Eaton BE. Org. Lett. 2000; 2: 3131
    • 24d Heller B, Sundermann B, Buschmann H, Drexler H.-J, You J, Holzgrabe U, Heller E, Oehme G. J. Org. Chem. 2002; 67: 4414
    • 24e Boñaga LV. R, Zhang H.-C, Maryanoff BE. Chem. Commun. 2004; 2394
    • 24f Boñaga LV. R, Zhang H.-C, Moretto AF, Ye H, Gauthier DA, Li J, Leo GC, Maryanoff BE. J. Am. Chem. Soc. 2005; 127: 3473
    • 24g Zhang H.-C, Boñaga LV. R, Ye H, Derian CK, Damiano BP, Maryanoff BE. Bioorg. Med. Chem. Lett. 2007; 17: 2863
    • 24h Hapke M, Kral K, Fischer C, Spannenberg A, Gutnov A, Redkin D, Heller B. J. Org. Chem. 2010; 75: 3993
    • 24i Nicolaus N, Schmalz H.-G. Synlett 2010; 2071
    • 24j Garcia P, Evanno Y, George P, Sevrin M, Ricci G, Malacria M, Aubert C, Gandon V. Chem. Eur. J. 2012; 18: 4337
    • 24k Fischer F, Hapke M. Eur. J. Org. Chem. 2018; 3193
    • 25a Tanaka K, Suzuki N, Nishida G. Eur. J. Org. Chem. 2006; 3917
    • 25b Tateno K, Ogawa R, Sakamoto R, Tsuchiya M, Kutsumura N, Otani T, Ono K, Kawai H, Saito T. J. Org. Chem. 2018; 83: 690
    • 26a Kumar P, Prescher S, Louie J. Angew. Chem. Int. Ed. 2011; 50: 10694
    • 26b Stolley RM, Maczka MT, Louie J. Eur. J. Org. Chem. 2011; 3815
    • 26c Stolley RM, Duong HA, Louie J. Organometallics 2013; 32: 4952
    • 26d Zhong Y, Spahn NA, Stolley RM, Nguyen MH, Louie J. Synlett 2015; 26: 307
    • 27a Lane TK, D’Souza BR, Louie J. J. Org. Chem. 2012; 77: 7555
    • 27b Wang C, Wang D, Xu F, Pan B, Wan B. J. Org. Chem. 2013; 78: 3065
    • 27c Spahn NA, Nguyen MH, Renner J, Lane TK, Louie J. J. Org. Chem. 2017; 82: 234
    • 28a Hashimoto T, Ishii S, Yano R, Miura H, Sakata K, Takeuchi R. Adv. Synth. Catal. 2015; 357: 3901
    • 28b Takeuchi R, Fujisawa S, Yoshida Y, Sagano J, Hashimoto T, Matsunami A. J. Org. Chem. 2018; 83: 1852
  • 29 Chowdhury H, Goswami A. Adv. Synth. Catal. 2017; 359: 314
  • 30 Bhatt D, Patel N, Chowdhury H, Bharatam PV, Goswami A. Adv. Synth. Catal. 2018; 360: 1876
  • 31 Yamamoto Y. Tetrahedron Lett. 2017; 58: 3787
  • 32 Chowdhury H, Goswami A. Org. Biomol. Chem. 2017; 15: 5824
  • 33 Bhatt D, Patel N, Chowdhury H, Bharatam PV, Goswami A. Adv. Synth. Catal. 2018; 360: 1876
  • 34 Bednářová E, Nečas D, Císařová I, Dusek M, Lamaty F, Kotora M. Monatsh. Chem. 2018; 150: 29
  • 35 Bednářová E, Dracinsky M, Malatinec S, Císařová I, Lamaty F, Kotora M. Adv. Synth. Catal. 2018; 360: 2869
  • 36 Remya PR, Suresh CH. Mol. Catal. 2018; 450: 29
  • 37 Auvinet A.-L, Ez-Zoubir M, Vitale MR, Brown JA, Michelet V, Ratovelomanana-Vidal V. ChemSusChem 2012; 5: 1888
  • 38 Auvinet A.-L, Ez-Zoubir M, Bompard S, Vitale MR, Brown JA, Michelet V, Ratovelomanana-Vidal V. ChemCatChem 2013; 5: 2389
  • 39 Auvinet A.-L, Michelet V, Ratovelomanana-Vidal V. Synthesis 2013; 45: 2003
  • 40 Jacquet J, Auvinet A.-L, Mandadapu AK, Haddad M, Ratovelomanana-Vidal V, Michelet V. Adv. Synth. Catal. 2015; 357: 1387
  • 41 Ye F, Haddad M, Ratovelomanana-Vidal V, Michelet V. Org. Lett. 2017; 19: 1104
  • 42 Ye F, Haddad M, Michelet V, Ratovelomanana-Vidal V. Org. Chem. Front. 2017; 4: 1063
  • 43 Ye F, Tran C, Jullien L, Le Saux T, Haddad M, Michelet V, Ratovelomanana-Vidal V. Org. Lett. 2018; 20: 4950
  • 44 Ye F, Boukattaya F, Haddad M, Ratovelomanana-Vidal V, Michelet V. New J. Chem. 2018; 42: 3222
  • 45 CCDC 1891613 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures
    • 46a Diyne 1a was prepared according to the following procedure: Kezuka S, Tanaka S, Ohe T, Nakaya Y, Takeuchi R. J. Org. Chem. 2006; 71: 543
    • 46b Diynes 1b, 1e, and 1f were prepared according to: Hashmi AS. K, Haffner T, Rudolph M, Rominger F. Chem. Eur. J. 2011; 17: 8195
    • 46c Diynes 1c, 1g, and 1h were prepared according to: Bednářová E, Colacino E, Lamaty F, Kotora M. Adv. Synth. Catal. 2016; 358: 1916
    • 46d Diyne 1d was prepared according to the following procedure: Llerena D, Buisine O, Aubert C, Malacria M. Tetrahedron 1998; 54: 9373
    • 46e Diyne 1i was prepared according to the following procedure: Mandal J, Prasad SK, Rao DS. S, Ramakrishnan S. J. Am. Chem. Soc. 2014; 136: 2538

      Selenocyanates 2af and 2i were prepared according to the following procedures:
    • 47a Sato T, Nakamura I, Terada M. Eur. J. Org. Chem. 2009; 5509
    • 47b Guan Y, Townsend SD. Org. Lett. 2017; 19: 5252

    • Selenocyanates 2g and 2h were prepared according to:
    • 47c Hung A, Duong HA, Gilligan RE, Cooke ML, Phipps RJ, Gaunt MJ. Angew. Chem. Int. Ed. 2011; 50: 463
    • 47d Bielawski M, Olofsson B. Chem. Commun. 2007; 2521