Synthesis 2019; 51(13): 2632-2647
DOI: 10.1055/s-0037-1610714
short review
© Georg Thieme Verlag Stuttgart · New York

Micelle-Mediated Chemistry in Water for the Synthesis of Drug Candidates

Further Information

Publication History

Received: 28 February 2019

Accepted after revision: 18 April 2019

Publication Date:
21 May 2019 (online)


Abstract

Micellar reaction conditions, in a predominantly aqueous medium, have been developed for transformations commonly used by synthetic chemists working in the pharmaceutical industry to discover and develop drug candidates. The reactions covered in this review are the Suzuki–Miyaura, Miyaura borylation, Sonogashira coupling, transition-metal-catalysed CAr–N coupling, SNAr, amidation, and nitro reduction. Pharmaceutically relevant examples of these applications will be used to show how micellar conditions can offer advantages in yield, operational ease, amount of waste generated, transition-metal catalyst loading, and safety over the use of organic solvents, irrespective of the setting in which they are used.

1 Introduction

2 Micelles as Solubilising Agents

3 Micelles as Nanoreactors

4 Designer Surfactants

5 A Critical Evaluation of the Case for Chemistry in Micelles

6 Scope of Review

7 Suzuki–Miyaura Coupling

8 Miyaura Borylation

9 Sonogashira Coupling

10 Transition-Metal-Catalysed CAr–N Couplings

11 SNAr

12 Amidation

13 Nitro Reduction

14 Micellar Sequences

15 Summary and Outlook

 
  • References

  • 1 Breslow R. Acc. Chem. Res. 1991; 24: 159
  • 2 Myers D. Surfactants in Solution: Monolayers and Micelles. In Surfactant Science and Technology, 3rd ed. John Wiley & Sons; Hoboken: 2005: 107-159
    • 3a Lipshutz BH, Ghorai S, Abela AR, Moser R, Nishikata T, Duplais C, Krasovskiy A, Gaston RD, Gadwood RC. J. Org. Chem. 2011; 76: 4379
    • 3b Klumphu P, Lipshutz BH. J. Org. Chem. 2014; 79: 888
  • 4 Andersson MP, Gallou F, Klumphu P, Takale BS, Lipshutz BH. Chem. Eur. J. 2018; 24: 6778
  • 5 Serrano-Luginbühl S, Ruiz-Mirazo K, Ostaszewski R, Gallou F, Walde P. Nat. Rev. Chem. 2018; 2: 306
  • 6 Rangel-Yagui CO, Pessoa AJr, Tavares LC. J. Pharm. Pharm. Sci. 2005; 8: 147
  • 7 Yordanova D, Ritter E, Gerlach T, Jensen JH, Smirnova I, Jakobtorweihen S. J. Phys. Chem. B 2017; 121: 5794
  • 8 Lipshutz BH. J. Org. Chem. 2017; 82: 2806
    • 9a Gabriel CM, Lee NR, Bigorne F, Klumphu P, Parmentier M, Gallou F, Lipshutz BH. Org. Lett. 2017; 19: 194
    • 9b Gallou F, Parmentier M, Zhou J, Guo P. WO2017168303A1, 2017
  • 10 Cortes-Clerget M, Lee NR, Lipshutz BH. Nat. Protoc. 2019; 14: 1108
  • 11 Gallou F, Guo P, Zhou J, Parmentier M. WO2018011696A1, 2018
  • 12 It is also worth noting that, in other contexts, micelles can mediate chemistry by binding materials at the micellar surface.
  • 13 As well as cationic, anionic and non-ionic surfactants, there are gemini surfactants in which more than one hydrophilic head group and hydrophobic tail group are linked by a spacer located at or near the head groups. See: Sharma R, Kamal A, Abdinejad M, Mahajan RK, Kraatz H.-B. Adv. Colloid Interface Sci. 2017; 248: 35
  • 14 Lipshutz BH, Abela AR. Polyoxyethanyl-α-tocopheryl Sebacate (PTS) . In e-EROS Encyclopedia of Reagents for Organic Synthesis [Online]. Wiley & Sons, Posted October 15, 2010. DOI:; org/10.1002/047084289X.rn01217
  • 15 Lipshutz BH. WO2007095627A2, 2007
  • 16 Berl V. US20110130562A1, 2011
    • 17a Huang S, Voigtritter KR, Unger JB, Lipshutz BH. Synlett 2010; 2041
    • 17b Lipshutz BH. Curr. Opin. Green Sustain. Chem. 2018; 11: 1
  • 18 Nagarathnam D, Vakkalanka SK. V. S, Muthuppalaniappan M, Viswanadha S, Babu G, Bhavar PK. WO2012151525A1, 2012
  • 19 Zhou J, Guo P, Gai Y, Parmentier M, Gallou F, Kong W, Gao F. WO2018134710A1, 2018
  • 20 European Chemicals Agency (ECHA), N,N-dimethylformamide infocard. https://echa.europa.eu/substance-information/-/substanceinfo/100.000.617 (accessed Jan 2, 2019).
  • 21 European Chemicals Agency (ECHA), 1-methyl-2-pyrrolidone infocard. https://echa.europa.eu/substance-information/-/substanceinfo/100.011.662 (accessed Jan 2, 2019).
  • 22 European Chemicals Agency (ECHA), N,N-dimethylacetamide infocard. https://echa.europa.eu/substance-information/-/substanceinfo/100.004.389 (accessed Jan 2, 2019).
  • 23 The toxicity of these solvents has resulted in their inclusion in the Candidate List of Substances of Very High Concern for REACH Authorization (SVHC), see: European Chemicals Agency (ECHA), Understanding REACH. https://echa.europa.eu/regulations/reach/understanding-reach (accessed Dec 26, 2018).
  • 24 Isochem, Vitamin E TPGS. https://pmcisochem.fr/node/2512 (accessed May 14, 2019).
  • 25 Navarro L. A Review of Health and Safety for Eastman Vitamin E TPGS, Product Safety & Health. Eastman Chemical Company Kingsport (TN, USA), ; 2005
    • 26a Kemsley JN. Chem. Eng. News 2009; 87 (10): 29
    • 26b Another advantage of micellar reactions in water is that the low solubility of oxygen gas in water aids reactions that require anaerobic conditions, though that which is not removed will partition into the micelles to an extent that is surfactant-dependent.
  • 27 Article entitled ‘Thirsty Work’: Milmo, S.; Chem. World Sept.; 2008, 66.

    • Only a minor proportion of the organic solvents that make up 56% of the waste generated by API pharmaceutical manufacturing processes arises due to their use as a solvent for a chemical reaction, see:
    • 29a Dunn PJ, Henderson RK, Mergelsberg I, Wells AS. Moving towards Greener Solvents for Pharmaceutical Manufacturing – An Industry Perspective, 13th Annual Green Chemistry & Engineering Conference, University of MD University College, June 23–25, 2009;
    • 29b Jiménez-González C, Poechlauer P, Broxterman QB, Yang B.-S, am Ende D, Baird J, Bertsch C, Hannah RE, Dell’Orco P, Noorman H, Yee S, Reintjens R, Wells A, Massonneau V, Manley J. Org. Process Res. Dev. 2011; 15: 900
    • 30a Dhote J, Ingole S, Chavhan A. Int. J. Eng. Res. Technol. 2012; 1: IJERTV1IS5271; https://www.ijert.org
    • 30b Lam CY, Yahya A, Ibrahim Z. Int. J. Appl. Environ. Sci. 2016; 11: 111
    • 30c Yildirim M, Topkaya B. Clean: Soil, Air, Water 2012; 40: 171
  • 32 Jiménez-González C, Ponder CS, Broxterman QB, Manley JB. Org. Process Res. Dev. 2011; 15: 912
  • 33 Handa S, Smith JD, Hageman MS, Gonzalez M, Lipshutz BH. ACS Catal. 2016; 6: 8179
  • 34 ICH Q7 Good Manufacturing Practice Guide for Active Pharmaceutical Ingredients (APIs). https://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q7/Step4/Q7_Guideline.pdf (accessed May 14, 2019).
  • 35 Benaglia M. New J. Chem. 2006; 30: 1525
    • 36a Lipshutz BH, Ghorai S. Aldrichimica Acta 2008; 41: 59
    • 36b Abela AR, Huang S, Moser R, Lipshutz BH. Chim. Oggi 2010; 28: 50
    • 36c Lipshutz BH, Abela AR, Boskovic ZV, Nishikata T, Duplais C, Krasovskiy A. Top. Catal. 2010; 53: 985
    • 36d Lipshutz BH, Ghorai S. Aldrichimica Acta 2012; 45: 3
    • 36e Lipshutz BH, Isley NA, Fennewald JC, Slack ED. Angew. Chem. Int. Ed. 2013; 52: 10952
    • 36f Lipshutz BH, Ghorai S. Green Chem. 2014; 16: 3660
    • 36g Krause N. Curr. Opin. Green Sustain. Chem. 2017; 7: 18
    • 36h Lipshutz BH, Ghorai S, Cortes-Clerget M. Chem. Eur. J. 2018; 24: 6672
    • 37a Whilst the micellar environment is integral to the success and operability of the reactions described herein, an ‘on water’ effect has been observed where strong hydrophobic interactions induce the reaction of certain water-insoluble reactants, see: Narayan S, Muldoon J, Finn MG, Fokin VV, Kolb HC, Sharpless KB. Angew. Chem. Int. Ed. 2005; 44: 3275
    • 37b Whilst out of scope, the pharmaceutical industry has also used surfactants to solubilise compounds coded with attached DNA tags in organic solvents as part of target validation and hit identification activities, see: Mannocci L, Leimbacher M, Wichert M, Scheuermann J, Neri D. Chem. Commun. 2011; 47: 12747
  • 38 Romney DK, Arnold FH, Lipshutz BH, Li C.-J. J. Org. Chem. 2018; 83: 7319
  • 39 Lipshutz BH. Chem 2018; 4: 2004
  • 40 Brown DG, Boström J. J. Med. Chem. 2016; 59: 4443
    • 41a Carey JS, Laffan D, Thomson C, Williams MT. Org. Biomol. Chem. 2006; 4: 2337
    • 41b Magano J, Dunetz JR. Chem. Rev. 2011; 111: 2177
    • 41c Borovika A, Albrecht J, Li J, Wells AS, Briddell C, Dillon BR, Diorazio LJ, Gage JR, Gallou F, Koenig SG, Kopach ME, Leahy DK, Martinez I, Olbrich M, Piper JL, Roschangar F, Sherer E, Eastgate MD. ChemRxiv 2019; preprint; DOI: 10.26434/chemrxiv.7594646
    • 42a Torborg C, Beller M. Adv. Synth. Catal. 2009; 351: 3027
    • 42b Buchwald SL, Ruiz-Castillo P. Chem. Rev. 2016; 116: 12564
  • 43 Roughley SD, Jordan AM. J. Med. Chem. 2011; 54: 3451
    • 44a Duplais C, Krasovskiy A, Lipshutz BH. Organometallics 2011; 30: 6090
    • 44b Bhonde VR, O’Neill BT, Buchwald SL. Angew. Chem. Int. Ed. 2016; 55: 1849
    • 45a Lu G.-p, Cai C. Colloids Surf. A 2010; 355: 193
    • 45b Lipshutz BH, Ghorai S, Leong WW. Y, Taft BR, Krogstad DV. J. Org. Chem. 2011; 76: 5061
  • 46 Kitanosono T, Miyo M, Kobayashi S. Tetrahedron 2015; 71: 7739
    • 47a Lipshutz BH, Ghorai S. Org. Lett. 2009; 11: 705
    • 47b Laville L, Charnay C, Lamaty F, Martinez J, Colacino E. Chem. Eur. J. 2012; 18: 760
    • 48a Oehme G, Paetzold E, Selke R. J. Mol. Catal. 1992; 71: L1-L5
    • 48b Selke R, Holz J, Riepe A, Borner A. Chem. Eur. J. 1998; 4: 769
    • 48c Asymmetric reactions performed in aqueous micelles have been reviewed: Lindström UM. Chem. Rev. 2002; 102: 2751
  • 49 Sigma-Aldrich, Lipshutz Group – Professor Product Portal. https://www.sigmaaldrich.com/technical-documents/articles/chemistry/professor-and-product-portal/lipshutz.html (accessed Feb 28, 2019).
  • 50 Braje W, Britze K, Dietrich JD, Jolit A, Kaschel J, Klee J, Lindner T. US20170217850, 2017 .
  • 51 The use of HPMC for the synthesis of the precursor to verinurad, a developmental treatment for gout and asymptomatic hyperuricaemia, is unpublished. Steven, A. AstraZeneca PT&D, Macclesfield, Cheshire, UK, 2018, unpublished work.
  • 52 Oehme G, Grassert I, Paetzold E, Meisel R, Drexler K, Fuhrmann H. Coord. Chem. Rev. 1999; 185–186: 585
  • 53 Mora M, Jimenez-Sanchidrian C, Ruiz JR. J. Mol. Catal. A: Chem. 2008; 285: 79
  • 54 Lipshutz BH, Petersen TB, Abela AR. Org. Lett. 2008; 10: 1333
  • 55 Lipshutz BH, Abela AR. Org. Lett. 2008; 10: 5329
  • 56 The ability of TPGS-750-M to solubilise oxygen does mean degassing operations are necessary when it is used for Suzuki–Miyaura cross-couplings. The oxygen-free nature of the cores of micelles formed from polyethoxylated castor oil means its use requires no such precautions. See: Mattiello S, Rooney M, Sanzone A, Brazzo P, Sassi M, Beverina L. Org. Lett. 2017; 19: 654
  • 57 Luzzio MJ, Papillon J, Visser MS. WO2016020864A1, 2016
  • 58 Handa S, Ibrahim F, Ansari TN, Gallou F. ChemCatChem 2018; 10: 4229
  • 59 Tria GS, Abrams T, Baird J, Burks HE, Firestone B, Gaither LA, Hamann LG, He G, Kirby CA, Kim S, Lombardo F, Macchi KJ, McDonnell DP, Mishina Y, Norris JD, Nunez J, Springer C, Sun Y, Thomsen NM, Wang C, Wang J, Yu B, Tiong-Yip C.-L, Peukert S. J. Med. Chem. 2018; 61: 2837
  • 60 Sakagami M, Hashizume H, Tanaka S, Okuno T, Yari H, Tonogaki K, Kouyama N. WO2009131096A1, 2009
  • 61 Guo P, Zhang H, Zhou J, Gallou F, Parmentier M, Wang H. J. Org. Chem. 2018; 83: 7523
  • 62 For another example of controlling protodeboronation using micellar conditions, see: Isley NA, Wang Y, Gallou F, Handa S, Aue DH, Lipshutz BH. ACS Catal. 2017; 7: 8331
  • 63 Chattopadhyay D. Resonance 2017; 22: 79
    • 64a National Research Council The National Academies Press: Washington D. C., 2012 https//doi.org/10.17226/13366, 66.
    • 64b Hayler JD, Leahy DK, Simmons EM. Organometallics 2019; 38: 36
  • 65 Patel ND, Rivalti D, Buono FG, Chatterjee A, Qu B, Braith S, Desrosiers J.-N, Rodriguez S, Sieber JD, Haddad N, Fandrick KR, Lee H, Yee NK, Busacca CA, Senanayake CH. Asian J. Org. Chem. 2017; 6: 1285
    • 66a Preparation of oxazine derivatives as inhibitors of 11β-hydroxysteroid dehydrogenase 1: Renz M, Schuehle M, Xu Z. US20120108579A1, 2012
    • 66b Zhang Y, Wu J.-P, Li G, Fandrick KR, Gao J, Tan Z, Johnson J, Li W, Sanyal S, Wang J, Sun X, Lorenz JC, Rodriguez S, Reeves JT, Grinberg N, Lee H, Yee N, Lu BZ, Senanayake CH. J. Org. Chem. 2016; 81: 2665
  • 67 Handa S, Lipshutz BH, Andersson MP, Gallou F, Reilly J. Angew. Chem. Int. Ed. 2016; 55: 4914
  • 68 Lipshutz BH, Handa S. WO2016094489A1, 2016
  • 69 ICH, Guideline for Elemental Impurities Q3D. https://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q3D/Q3D_Step_4.pdf (accessed Feb 9, 2019).
  • 70 Landstrom EB, Handa S, Aue DH, Gallou F, Lipshutz BH. Green Chem. 2018; 20: 3436
    • 71a Handa S, Wang Y, Gallou F, Lipshutz BH. Science 2015; 349: 1087
    • 71b Lipshutz BH, Handa S. WO2016187303A1, 2016
  • 72 Handa S, Slack ED, Lipshutz BH. Angew. Chem. Int. Ed. 2015; 54: 11994
  • 73 Han F.-S. Chem. Soc. Rev. 2013; 42: 5270
  • 74 Matos K, Soderquist JA. J. Org. Chem. 1998; 63: 461
  • 75 Lee NR, Linstadt RT. H, Gloisten DJ, Gallou F, Lipshutz BH. Org. Lett. 2018; 20: 2902
  • 76 Mahajan NP, Mahajan KN, Lawrence NJ, Lawrence HR. WO2017023899A1, 2017
  • 77 Lipshutz BH, Moser R, Voigtritter KR. Isr. J. Chem. 2010; 50: 691
  • 78 Boiteau J.-G, Clary L, Millois Barbuis C. WO2006053791A2, 2006
    • 79a Chen L, Li C.-J. Org. Lett. 2004; 6: 3151
    • 79b Lv Q.-R, Meng X, Wu J.-S, Gao Y.-J, Li C.-L, Zhu Q.-Q, Chen B.-H. Catal. Commun. 2008; 9: 2127
    • 79c Bakherad M, Keivanloo A, Hashemi M. Synth. Commun. 2009; 39: 1002
    • 79d Bakherad M, Keivanloo A, Bahramian B, Hashemi M. Tetrahedron Lett. 2009; 50: 1557
    • 79e Kamali TA, Bakherad M, Nasrollahzadeh M, Farhangi S, Habibi D. Tetrahedron Lett. 2009; 50: 5459
    • 79f Bakherad M, Keivanloo A, Mihanparast S. Synth. Commun. 2010; 40: 179
  • 80 Shinde MM, Bhagwat SS. Colloids Surf. A 2011; 380: 201
  • 81 Lipshutz BH, Chung DW, Rich B. Org. Lett. 2008; 10: 3793
  • 82 Handa S, Smith JD, Zhang Y, Takale BS, Gallou F, Lipshutz BH. Org. Lett. 2018; 20: 542
  • 83 Wang T, Hanzelka B, Muh U, Bemis G, Zuccola HJ. WO2011019405A1, 2011
  • 84 Cooke JW. B, Bright R, Coleman MJ, Jenkins KP. Org. Process Res. Dev. 2001; 5: 383
  • 85 Jin B, Gallou F, Reilly J, Lipshutz BH. Chem. Sci. 2019; 10: 3481
  • 86 Jakobi M, Gallou F, Sparr C, Parmentier M. Helv. Chim. Acta 2019; 102: e1900024
  • 87 Handa S, Jin B, Bora PP, Wang Y, Zhang X, Gallou F, Reilly J, Lipshutz BH. ACS Catal. 2019; 9: 2423
    • 88a Schlummer B, Scholz U. Chim. Oggi 2005; 23: 18
    • 88b Scholz U. Evolution of Transition Metal-Catalyzed Amination Reactions: The Industrial Approach. In Amino Group Chemistry: From Synthesis to the Life Sciences, 1st ed. Ricci A. Wiley-VCH; Weinheim: 2008: 333-375
    • 88c Dumrath A, Luebbe C, Beller M. Palladium-Catalyzed Cross-Coupling Reactions - Industrial Applications. In Palladium-Catalyzed Coupling Reactions: Practical Aspects and Future Developments. Molnár A. Wiley-VCH; Weinheim: 2013: 445-489
    • 88d Paradies J. Palladium-Catalyzed Aromatic Carbon-Nitrogen Bond Formation. In Metal-Catalyzed Cross-Coupling Reactions and More, Vol. 3. de Meijere A, Bräse S, Oestreich M. Wiley-VCH; Weinheim: 2014: 995-1066
  • 89 Lipshutz BH, Chung DW, Rich B. Adv. Synth. Catal. 2009; 351: 1717
  • 90 Buchwald SL, Mauger C, Mignani G, Scholz U. Adv. Synth. Catal. 2006; 348: 23
  • 91 Wolfe JP, Tomori H, Sadighi JP, Yin J, Buchwald SL. J. Org. Chem. 2000; 65: 1158
  • 92 Isley NA, Dobarco S, Lipshutz BH. Green Chem. 2014; 16: 1480
  • 93 Salomé C, Wagner P, Bollenbach M, Bihel F, Bourguignon J.-J, Schmitt M. Tetrahedron 2014; 70: 3413
  • 94 Wagner P, Bollenbach M, Doebelin C, Bihel F, Bourguignon J.-J, Salomé C, Schmitt M. Green Chem. 2014; 16: 4170
  • 95 Kumar A, Bishnoi AK. RSC Adv. 2015; 5: 20516
    • 96a Dessole G, Branca D, Ferrigno F, Kinzel O, Muraglia E, Palumbi MC, Rowley M, Serafini S, Steinkuehler C, Jones P. Bioorg. Med. Chem. Lett. 2009; 19: 4191
    • 96b Guo S, Song Y, Huang Q, Yuan H, Wan B, Wang Y, He R, Beconi MG, Franzblau SG, Kozikowski AP. J. Med. Chem. 2010; 53: 649
    • 96c Diallo H, Angell DC, Barnett HA, Biggadike K, Coe DM, Cooper TW. J, Craven A, Gray JR, House D, Jack TI, Keeling SP, Macdonald SJ. F, McLay IM, Oliver S, Taylor SJ, Uings IJ, Wellaway N. Bioorg. Med. Chem. Lett. 2011; 21: 1126
    • 96d Jiang R, Frackowiak B, Shin Y, Song X, Chen W, Lin L, Cameron MD, Duckett DR, Kamenecka TM. Bioorg. Med. Chem. Lett. 2013; 23: 2683
    • 96e Zhao C.-r, Wang R.-q, Li G, Xue X.-x, Sun C.-j, Qu X.-j, Li W.-b. Bioorg. Med. Chem. Lett. 2013; 23: 1989
    • 96f Chung CK, Bulger PG, Kosjek B, Belyk KM, Rivera N, Scott ME, Humphrey GR, Limanto J, Bachert DC, Emerson KM. Org. Process Res. Dev. 2014; 18: 215
    • 96g Frost JM, DeGoey DA, Shi L, Gum RJ, Fricano MM, Lundgaard GL, El-Kouhen OF, Hsieh GC, Neelands T, Matulenko MA, Daanen JF, Pai M, Ghoreishi-Haack N, Zhan C, Zhang X.-F, Kort ME. J. Med. Chem. 2016; 59: 3373
    • 96h Hemmerling M, Edman K, Lepistoe M, Eriksson A, Ivanova S, Dahmen J, Rehwinkel H, Berger M, Hendrickx R, Dearman M, Jensen TJ, Wissler L, Hansson T. Bioorg. Med. Chem. Lett. 2016; 26: 5741
    • 96i Ripa L, Edman K, Dearman M, Edenro G, Hendrickx R, Ullah V, Chang H.-F, Lepistoe M, Chapman D, Geschwindner S, Wissler L, Svanberg P, Lawitz K, Malmberg J, Nikitidis A, Olsson RI, Bird J, Llinas A, Hegelund-Myrbaeck T, Berger M, Thorne P, Harrison R, Koehler C, Drmota T. J. Med. Chem. 2018; 61: 1785
  • 97 Ding X, Bai J, Wang H, Zhao B, Li J, Ren F. Tetrahedron 2017; 73: 172
  • 98 Ahanthem D, Laitonjam WS. Asian J. Org. Chem. 2017; 6: 1492
  • 99 WHO Model Lists of Essential Medicines 2017. http://www.who.int/medicines/publications/essentialmedicines/en/ (accessed Sept 18, 2018).
  • 100 Ashcroft CP, Dunn PJ, Hayler JD, Wells AS. Org. Process Res. Dev. 2015; 19: 740
  • 101 Isley NA, Linstadt RT. H, Kelly SM, Gallou F, Lipshutz BH. Org. Lett. 2015; 17: 4734
  • 102 Du Z, Hintermann S, Hurth K, Jacquier S, Lehmann H, Moebitz H, Soldermann N, Stojanovic A. WO2015010641A1, 2015
    • 103a Ratcliffe AJ, Alam M, Beevers RE, Davenport RJ, Davies N, Haughan AF, Jones MW, Lowe C, Perry BG, Phillips DJ, Pitt WR, Sharpe A. WO2006038001A1, 2006
    • 103b Chintakunta VK, Paradkar V. WO2014155300A2, 2014
    • 103c Schiltz GE, Mishra RK, Platanias LC, Izquierdo-Ferrer J. WO2017075367A1, 2017
  • 104 Chan HM, Gu X.-JJ, Huang Y, Li L, Mi Y, Qi W, Sendzik M, Sun Y, Wang L, Yu Z, Zhang H, Zhang JY, Zhang M, Zhang Q, Zhao K. US20160176882A1, 2016
  • 105 Lee NR, Gallou F, Lipshutz BH. Org. Process Res. Dev. 2017; 21: 218
    • 106a El-Faham A, Albericio F. Chem. Rev. 2011; 111: 6557
    • 106b MacMillan DS, Murray J, Sneddon HF, Jamieson C, Watson AJ. B. Green Chem. 2013; 15: 596
  • 107 Badland M, Crook R, Delayre B, Fussell SJ, Gladwell I, Hawksworth M, Howard RM, Walton R, Weisenburger GA. Tetrahedron Lett. 2017; 58: 4391
  • 108 Gallou F, Guo P, Parmentier M, Zhou J. Org. Process Res. Dev. 2016; 20: 1388
    • 109a Gabriel CM, Keener M, Gallou F, Lipshutz BH. Org. Lett. 2015; 17: 3968
    • 109b Cortes-Clerget M, Berthon J.-Y, Krolikiewicz-Renimel I, Chaisemartin L, Lipshutz BH. Green Chem. 2017; 19: 4263
    • 109c The procedure allows the incorporation of β-amino acids or unnatural d-amino acids as well as l-amino acids.
  • 110 Parmentier M, Wagner MK, Magra K, Gallou F. Org. Process Res. Dev. 2016; 20: 1104
  • 111 Orlandi M, Brenna D, Harms R, Jost S, Benaglia M. Org. Process Res. Dev. 2018; 22: 430
  • 112 Kelly SM, Lipshutz BH. Org. Lett. 2014; 16: 98
  • 113 Feng J, Handa S, Gallou F, Lipshutz BH. Angew. Chem. Int. Ed. 2016; 55: 8979
  • 114 Gabriel CM, Parmentier M, Riegert C, Lanz M, Handa S, Lipshutz BH, Gallou F. Org. Process Res. Dev. 2017; 21: 247
  • 115 Pang H, Gallou F, Sohn H, Camacho-Bunquin J, Delferro M, Lipshutz BH. Green Chem. 2018; 20: 130
    • 116a Lee NR, Bikovtseva AA, Cortes-Clerget M, Gallou F, Lipshutz BH. Org. Lett. 2017; 19: 6518
    • 116b Palladium-doped iron nanoparticles and CIP show a degree of complementarity, being most suitable for electron-poor and electron-rich (hetero)aromatic substrates respectively.
  • 117 Chan S, Han K, Qu R, Tong L, Li Y, Zhang Z, Cheng H, Lu X, Patterson A, Smaill J, Ren X, Ding J, Xie H, Ding K. Bioorg. Med. Chem. Lett. 2015; 25: 4277
  • 118 Mollard A, Warner SL, Call LT, Wade ML, Bearss JJ, Verma A, Sharma S, Vankayalapati H, Bearss DJ. ACS Med. Chem. Lett. 2011; 2: 907
  • 119 Liang X, Zang J, Zhu M, Gao Q, Wang B, Xu W, Zhang Y. ACS Med. Chem. Lett. 2016; 7: 950
    • 120a Dang Q, Kasibhatla SR, Reddy KR, Erion MD, Reddy MR, Agarwal A. WO2000014095A1, 2000
    • 120b Jaing T, Kasibhatla SR, Reddy RK. WO2001047935A2, 2001
    • 120c Erion MD, Van Poelje PD. US6756360B1, 2004
  • 121 Cherepenko TI, Bal’on YG, Shul’man MD. Fiziol. Akt. Veshchestva (1966–1992) 1983; 72
  • 122 Gallou F, Isley NA, Ganic A, Onken U, Parmentier M. Green Chem. 2016; 18: 14
  • 123 Spada LT, Shiah JG, Hughes PM, Malone TC, Devries GW, Edelman JL, Wurster JA, Blanda WM. WO2010075197A1, 2010
  • 124 Poliakoff M, Licence P, George MW. Angew. Chem. Int. Ed. 2018; 57: 12590