Synlett 2018; 29(14): 1814-1822
DOI: 10.1055/s-0037-16110021
account
© Georg Thieme Verlag Stuttgart · New York

The n-dig-Cyclization (n = 5, 6) of Alkynes Involving Fixation of CO2

Bingbing Wang
,
Song Sun
,
Jiang Cheng*
We thank the National Natural Science Foundation of China (No. 21572025), ‘Innovation and Entrepreneurship Talents’ Introduction Plan of Jiangsu Province, Natural Science Foundation of Jiangsu ­Province (BK20171193), the Key University Science Research Project of Jiangsu Province (15 KJA150001), Jiangsu Key Laboratory of ­Advanced Catalytic Materials and Technology (BM2012110), and ­Advanced Catalysis and Green Manufacturing Collaborative Innovation Center for financial support. S.S. thanks the National Natural ­Science Foundation of China (No. 21602019) and Young Natural ­Science Foundation of Jiangsu Province (BK20150263) for financial support.
Further Information

Publication History

Received: 14 February 2018

Accepted after revision:24 April 2018

Publication Date:
11 June 2018 (online)


Abstract

Being an abundant, easily available, and renewable one-carbon source, carbon dioxide has received much attention in organic synthesis. However, carbon dioxide is a thermodynamically inert molecule that is hard to incorporate into useful chemicals. Nevertheless, various elegant methods have been developed for the incorporation of carbon dioxide in a number of heterocycles. In this review, we summarize and update the recent advances in n-dig-cyclization of alkynes involving the fixation of CO2, including the 5-dig- and 6-dig-cyclization of alkynes.

1 Introduction

2 The 5-dig-Cyclization of Alkynes

3 The 6-dig-Cyclization of Alkynes

4 Conclusion

 
  • References

    • 1a Olah GA. Prakash GK. S. Goeppert A. J. Am. Chem. Soc. 2011; 133: 12881
    • 1b Omae I. Catal. Today 2006; 115: 33
    • 1c Federsel C. Jackstell R. Beller M. Angew. Chem. Int. Ed. 2010; 49: 6254
    • 1d Li Y.-N. Ma R. He L.-N. Diao Z.-F. Catal. Sci. Technol. 2014; 4: 1570
    • 1e Omae I. Coord. Chem. Rev. 2012; 256: 1384
    • 1f Energy Information Administration, International Energy Outlook (report No. DOE/EIA-0484). U.S. Department of Energy; Washington DC: 2004. available online at www.eia.doe.gov/oiaf/ieo/index.html
    • 2a Wang X. Liu Y. Martin R. J. Am. Chem. Soc. 2015; 137: 6476
    • 2b Aoki M. Kaneko M. Izumi S. Ukai K. Iwasawa N. Chem. Commun. 2004; 2568
    • 2c Chauvier C. Tlili A. Das Neves Gomes C. Thuéry P. Cantat T. Chem. Sci. 2015; 6: 2938
    • 2d Wang X. Nakajima M. Martin R. J. Am. Chem. Soc. 2015; 137: 8924
    • 2e Moragas T. Gaydou M. Martin R. Angew. Chem. Int. Ed. 2016; 55: 5053
    • 2f Zall CM. Linehan JC. Appel AM. ACS Catal. 2015; 5: 5301
    • 2g Masuda Y. Ishida N. Murakami M. J. Am. Chem. Soc. 2015; 137: 14063
    • 2h Rebih F. Andreini M. Moncomble A. Harrson-Marchand A. Maddaluno J. Durandetti M. Chem. Eur. J. 2016; 22: 3758
    • 2i Fujihara T. Xu T. Semba K. Terao J. Tsuji Y. Angew. Chem. Int. Ed. 2011; 50: 523
    • 2j Shimizu K. Takimoto M. Sato Y. Mori M. Org. Lett. 2005; 7: 195
    • 3a Song Y. Chen W. Zhao C. Li S. Wei W. Sun Y. Angew. Chem. Int. Ed. 2017; 56: 10840
    • 3b Wang D. Bi Q. Yin G. Zhao W. Huang F. Xie X. Jiang M. Chem. Commun. 2016; 14226
    • 3c Hurtado L. Natividad R. García H. Catal. Commun. 2016; 84: 30
    • 3d Goeppert A. Czaun M. Jones J.-P. Surya Prakash GK. Olah GA. Chem. Soc. Rev. 2014; 43: 7995
    • 3e Gui Y.-Y. Hu N. Chen X.-W. Liao L.-L. Ju T. Ye J.-H. Zhang Z. Li J. Yu D.-G. J. Am. Chem. Soc. 2017; 139: 17011
    • 3f Wesselbaum S. vomStein T. Klankermayer J. Leitner W. Angew. Chem. Int. Ed. 2012; 51: 7499
    • 3g Tominaga K.-i. Sasaki Y. J. Mol. Catal. A: Chem. 2004; 220: 159
    • 3h Wang Li. Yi Y. Guo H. Tu X. ACS Catal. 2018; 8: 90
    • 4a Zhou H. Wang G. Zhang W. Lu X. ACS Catal. 2015; 5: 6773
    • 4b Honda M. Tamura M. Nakao K. Suzuki K. Nakagawa Y. Tomishige K. ACS Catal. 2014; 4: 1893
    • 4c Decortes A. Castilla AM. Kleij AW. Angew. Chem. Int. Ed. 2010; 49: 9822
    • 4d Rintjema J. Epping R. Fiorani G. Martín E. Escudero-Adán EC. Kleij AW. Angew. Chem. Int. Ed. 2016; 55: 3972
    • 4e Desens W. Werner T. Adv. Synth. Catal. 2016; 358: 622
    • 4f Vara BA. Struble TJ. Wang W. Dobish MC. Johnston JN. J. Am. Chem. Soc. 2015; 137: 7302
    • 4g Song Q.-W. Chen W.-Q. Ma R. Yu A. Li Q.-Y. Chang Y. He L.-N. ChemSusChem 2015; 8: 821
    • 4h Darensbourg DJ. Chem. Rev. 2007; 107: 2388
    • 4i Sopeña S. Fiorani G. Martín C. Kleij AW. ChemSusChem 2015; 8: 3248
    • 4j Liu X. Zhang S. Song Q.-W. Liu X.-F. Ma R. He L.-N. Green Chem. 2016; 18: 2871
    • 5a Yu B. Zhao Y. Zhang H. Xu J. Hao L. Gao X. Liu Z. Chem. Commun. 2014; 2330
    • 5b Yu B. Yang Z. Zhao Y. Hao L. Zhang H. Gao X. Han B. Liu Z. Chem. Eur. J. 2016; 22: 1097
  • 6 García-Domínguez P. Fehr L. Rusconi G. Nevado C. Chem. Sci. 2016; 7: 3914
  • 7 Sun S. Wang B. Gu N. Yu J.-T. Cheng J. Org. Lett. 2017; 19: 1088
    • 8a Takeda Y. Okumura S. Tone S. Sasaki I. Minakata S. Org. Lett. 2012; 14: 4874
    • 8b Sekine K. Kobayashi R. Yamada T. Chem. Lett. 2015; 44: 1407
    • 8c Minakata S. Sasaki I. Ide T. Angew. Chem. Int. Ed. 2010; 49: 1309
    • 8d Ouyang L. Tang X.-D. He H.-T. Qi C.-R. Xiong W.-F. Ren Y.-W. Jiang H.-F. Adv. Synth. Catal. 2015; 357: 2556
    • 8e Sugiyama N. Ohseki M. Kobayashi R. Sekine K. Saito K. Yamada T. Chem. Lett. 2017; 46: 1323
  • 9 Uemura K. Kawaguchi T. Takayama H. Nakamura A. Inoue Y. J. Mol. Catal. A: Chem. 1999; 139: 1
    • 10a Kim HS. Kim JW. Shim SC. Kim TJ. J. Organomet. Chem. 1997; 545: 337
    • 10b Gu Y. Shi F. Deng Y. J. Org. Chem. 2004; 69: 391
    • 10c Jiang H.-F. Wang A.-Z. Liu H.-L. Qi C.-R. Eur. J. Org. Chem. 2008; 2309
    • 11a Kikuchi S. Yoshida S. Sugawara Y. Yamada W. Cheng H.-M. Fukui K. Sekine K. Iwakura I. Ikeno T. Yamada T. Bull. Chem. Soc. Jpn. 2011; 84: 698
    • 11b Song Q.-W. Yu B. Li X.-D. Ma R. Diao Z.-F. Li R.-G. Li W. He L.-N. Green Chem. 2014; 16: 1633
    • 11c Tang X. Qi C. He H. Jiang H. Ren Y. Yuan G. Adv. Synth. Catal. 2013; 355: 2019
    • 12a Kayaki Y. Yamamoto M. Suzuki T. Ikariya T. Green Chem. 2006; 8: 1019
    • 12b Kayaki Y. Yamamoto M. Ikariya T. J. Org. Chem. 2007; 72: 647
    • 12c Bruneau C. Dixneuf PH. J. Mol. Catal. 1992; 74: 97
    • 12d Wang M.-Y. Song Q.-W. Ma R. Xie J.-N. He L.-N. Green Chem. 2016; 18: 282
    • 12e Kayaki Y. Yamamoto M. Ikariya T. Angew. Chem. Int. Ed. 2009; 48: 4194
    • 12f Ca’ ND. Gabriele B. Ruffolo G. Veltri L. Zanetta T. Costa M. Adv. Synth. Catal. 2011; 353: 133
    • 12g Wang Y.-B. Wang Y.-M. Zhang W.-Z. Lu X.-B. J. Am. Chem. Soc. 2013; 135: 11996
    • 12h Hase S. Kayaki Y. Ikariya T. ACS Catal. 2015; 5: 5135
    • 12i Hu J. Ma J. Zhu Q. Qian Q. Han H. Mei Q. Han B. Green Chem. 2016; 18: 382
  • 13 Ishida T. Kobayashi R. Yamada T. Org. Lett. 2014; 16: 2430
  • 14 Ugajin R. Kikuchi S. Yamada T. Synlett 2014; 25: 1178
    • 15a Ishida T. Kikuchi S. Tsubo T. Yamada T. Org. Lett. 2013; 15: 848
    • 15b Kikuchi S. Yamada T. Chem. Rec. 2014; 14: 62
    • 15c Didehban K. Vessally E. Salary M. Edjlali L. Babazadeh M. J. CO2 Util. 2018; 23: 42
  • 16 Ishida T. Kikuchi S. Yamada T. Org. Lett. 2013; 15: 3710
  • 17 Guo C.-X. Zhang W.-Z. Liu S. Lu X.-B. Catal. Sci. Technol. 2014; 4: 1570
  • 18 Wang B. Sun S. Yu J.-T. Jiang Y. Cheng J. Org. Lett. 2017; 19: 4319
    • 19a Liu X. Wang M.-Y. Wang S.-Y. Wang Q. He L.-N. ChemSusChem 2017; 10: 1210
    • 19b Yoshida S. Fukui K. Kikuchi S. Yamada T. Chem. Lett. 2009; 38: 786
    • 19c Yoshida M. Mizuguchi T. Shishido K. Chem. Eur. J. 2012; 18: 15578
    • 19d Fujii A. Choi J.-C. Fujita K. Tetrahedron Lett. 2007; 58: 4483
    • 19e Chen G.-F. Fu C.-L. Ma S.-M. Org. Biomol. Chem. 2011; 9: 105
    • 20a Das B. Kundu P. Chowdhury C. Org. Biomol. Chem. 2014; 12: 741
    • 20b Bacchi A. Chiusoli AP. Costa M. Gabriele B. Righi C. Salerno G. Chem. Commun. 1997; 1209
    • 21a Nicholls R. Kaufhold S. Nguyen BN. Catal. Sci. Technol. 2014; 4: 3458
    • 21b Dell’Amico DB. Calderazzo F. Labella L. Marchetti F. Pampaloni G. Chem. Rev. 2003; 103: 3857
  • 22 Joumier JM. Fournier J. Bruneau C. Dixneuf PH. J. Chem. Soc., Perkin Trans. 1 1991; 3271
    • 23a Yoshida S. Fukui K. Kikuchi S. Yamada T. J. Am. Chem. Soc. 2010; 132: 4072
    • 23b Song Q.-W. He L.-N. Adv. Synth. Catal. 2016; 358: 1251
    • 23c Yamada W. Sugawara Y. Cheng HM. Ikeno T. Yamada T. Eur. J. Org. Chem. 2007; 2604
  • 24 Yuan G.-Q. Zhu G.-J. Chang X.-Y. Qi C.-R. Jiang H.-F. Tetrahedron 2010; 66: 9981
  • 25 Liu Y. Yao B. Deng C.-L. Tang R.-Y. Zhang X.-G. Li J.-H. Org. Lett. 2011; 13: 2184