Synthesis 2019; 51(07): 1655-1661
DOI: 10.1055/s-0037-1611355
paper
© Georg Thieme Verlag Stuttgart · New York

C3-Allylation of Indoles via an Iridium-Catalyzed Branch-Selective Ring-Opening Reaction of Vinylcyclopropanes

Lei Yu
,
Zi-Qi Zhu
,
Meng Sun
,
Guang-Jian Mei*
School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. of China   Email: fshi@jsnu.edu.cn   Email: guangjianM@jsnu.edu.cn
,
Feng Shi  *
School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. of China   Email: fshi@jsnu.edu.cn   Email: guangjianM@jsnu.edu.cn
› Author Affiliations
We much appreciate the financial support from NSFC (21772069 and 21702077), the Natural Science Foundation of Jiangsu Province (BK20160003 and BK20170227), Six Kinds of Talents Project of Jiangsu Province (SWYY-025), and Natural Science Foundation of Xuzhou City (KH17021).
Further Information

Publication History

Received: 25 August 2018

Accepted after revision: 24 October 2018

Publication Date:
03 December 2018 (online)


Abstract

An iridium-catalyzed branch-selective ring-opening reaction of vinylcyclopropanes with indoles has been established, which afforded C3-allylindoles in generally good to excellent yields (up to 95%). Considering that no wastes were generated in the whole process and branch-selective ring-opening reaction of vinylcyclopropanes was rarely reported, this strategy not only can be regarded as a highly atom-economic approach for C3-allylindoles, but also will greatly enrich the chemistry of vinylcyclopropanes.

Supporting Information

 
  • References

  • 1 These authors contributed equally to the work.
    • 2a Bandini M, Eichholzer A. Angew. Chem. Int. Ed. 2009; 48: 9608
    • 2b Humphrey GR, Kuethe JT. Chem. Rev. 2006; 106: 2875
    • 2c Kochanowska-Karamyan AJ, Hamann MT. Chem. Rev. 2010; 110: 4489
    • 3a Tanaka H, Noguchi H, Abe I. Org. Lett. 2005; 7: 5873
    • 3b Wang H, Reisman SE. Angew. Chem. Int. Ed. 2014; 53: 6206
    • 3c Li H, Sun Y, Zhang Q, Zhu Y, Li SM, Li A, Zhang C. Org. Lett. 2015; 17: 306
    • 3d Lang JH, Jones PG, Lindel T. Chem. Eur. J. 2017; 23: 12714

      For a recent review:
    • 5a Ganesh V, Chandrasekaran S. Synthesis 2016; 48: 4347

    • For some examples:
    • 5b Jiao L, Yu Z.-X. J. Org. Chem. 2013; 78: 6842
    • 5c Xu C.-F, Zheng B.-H, Suo J.-J, Ding C.-H, Hou X.-L. Angew. Chem. Int. Ed. 2015; 54: 1624
    • 5d Li T.-R, Cheng B.-Y, Fan S.-Q, Wang Y.-N, Lu L.-Q, Xiao W.-J. Chem. Eur. J. 2016; 22: 6243
    • 5e Wang Y.-N, Li T.-R, Zhang M.-M, Cheng B.-Y, Lu L.-Q, Xiao W.-J. J. Org. Chem. 2016; 81: 10491
    • 5f Feng J.-J, Lin T.-Y, Zhu C.-Z, Wang H, Wu H.-H, Zhang J. J. Am. Chem. Soc. 2016; 138: 2178
    • 5g Lin T.-Y, Zhu C.-Z, Zhang P, Wang Y, Wu H.-H, Feng J.-J, Zhang J. Angew. Chem. Int. Ed. 2016; 55: 10844
    • 5h Jacoby D, Celerier JP, Haviari G, Petit H, Lhommet G. Synthesis 1992; 884
    • 6a Mei L.-Y, Wei Y, Xu Q, Shi M. Organometallics 2012; 31: 7591
    • 6b Liu Z.-S, Li WK, Kang TR, He L, Liu Q.-Z. Org. Lett. 2015; 17: 150
    • 6c Halskov KS, Naesborg L, Tur F, Jorgensen KA. Org. Lett. 2016; 18: 2220
    • 6d Ma C, Huang Y, Zhao Y. ACS Catal. 2016; 6: 6408
    • 6e Yuan Z, Wei W, Lin A, Yao H. Org. Lett. 2016; 18: 3370
    • 6f Gee YS, Rivinoja DJ, Wales SM, Gardiner MG, Ryan JH, Hyland CJ. T. J. Org. Chem. 2017; 82: 13517
    • 6g Laugeois M, Ling J, Férard C, Michelet V, Ratovelomanana-Vidal V, Vitale MR. Org. Lett. 2017; 19: 2266
    • 6h Sun M, Zhu Z.-Q, Gu L, Wan X, Mei G.-J, Shi F. J. Org. Chem. 2018; 83: 2341
    • 7a Niu H.-Y, Du C, Xie M.-S, Wang Y, Zhang Q, Qu G.-R, Guo H.-M. Chem. Commun. 2015; 51: 3328
    • 7b Yin J, Hyland CJ. J. Org. Chem. 2015; 80: 6529
    • 7c Ivanova OA, Chagarovskiy AO, Shumsky AN, Krasnobrov VD, Levina II, Trushkov IV. J. Org. Chem. 2018; 83: 543
    • 8a Sumida Y, Yorimitsu H, Oshima K. Org. Lett. 2008; 10: 4677
    • 8b Li C.-F, Xiao W.-J, Alper H. J. Org. Chem. 2009; 74: 888
    • 8c Sherry BD, Fürstner A. Chem. Commun. 2009; 7116
    • 8d Dieskau AP, Holzwarth MS, Plietker B. J. Am. Chem. Soc. 2012; 134: 5048
    • 8e Garve LK. B, Werz DB. Org. Lett. 2015; 17: 596
    • 8f Ieki R, Kani Y, Tsunoi S, Shibata I. Chem. Eur. J. 2015; 21: 6295
    • 8g Cao R, Zhang J, Zhou H, Yang H, Jiang G. Org. Biomol. Chem. 2016; 14: 2191
    • 8h Zell D, Bu Q, Feldt M, Ackermann L. Angew. Chem. Int. Ed. 2016; 55: 7408
    • 8i Lu Q, Klauck FJ. R, Glorius F. Chem. Sci. 2017; 8: 3379
    • 8j Meyer TH, Liu W, Feldt M, Wuttke A, Mata RA, Ackermann L. Chem. Eur. J. 2017; 23: 5443
    • 8k Yu W, Zhang W, Liu Y, Liu Z, Zhang Y. Org. Chem. Front. 2017; 4: 77
  • 9 Trost BM, Bai WJ, Hohn C, Bai Y, Cregg JJ. J. Am. Chem. Soc. 2018; 140: 6710
  • 10 Sebelius S, Olsson VJ, Wallner OA, Szabó KJ. J. Am. Chem. Soc. 2006; 128: 8150
  • 11 Matsuoka S.-I, Numata K, Suzuki M. Chem. Lett. 2015; 44: 1532
    • 12a Zhang Y.-C, Zhao J.-J, Jiang F, Sun S.-B, Shi F. Angew. Chem. Int. Ed. 2014; 53: 13912
    • 12b Zhao J.-J, Sun S.-B, He S.-H, Wu Q, Shi F. Angew. Chem. Int. Ed. 2015; 54: 5460
    • 12c Zhang H.-H, Wang C.-S, Li C, Mei G.-J, Li Y, Shi F. Angew. Chem. Int. Ed. 2017; 56: 116
    • 12d Ma C, Zhou J.-Y, Zhang Y.-Z, Mei G.-J, Shi F. Angew. Chem. Int. Ed. 2018; 57: 5398
    • 13a Zheng C, You S.-L. Chem 2016; 1: 830
    • 13b Hartwig JF, Stanley LM. Acc. Chem. Res. 2010; 43: 1461
    • 13c Qu J, Helmchen G. Acc. Chem. Res. 2017; 50: 2539
  • 14 CCDC 1863831 (3at) contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.