CC BY-ND-NC 4.0 · Synthesis 2019; 51(05): 1284-1292
DOI: 10.1055/s-0037-1611633
paper
Copyright with the author

Visible-Light-Induced Decarboxylative C–H Adamantylation of Azoles at Ambient Temperature

Julian Koeller
,
,
Institut für Organische und Biomolekulare Chemie, Georg August-Universität, Tammannstraße 2, 37077 Göttingen, Germany   Email: Lutz.Ackermann@chemie.uni-goettingen.de
› Author Affiliations
Further Information

Publication History

Received: 24 November 2018

Accepted: 27 November 2018

Publication Date:
19 December 2018 (online)

 


§ These authors contributed equally to this work

Published as part of the 50 Years SYNTHESIS – Golden Anniversary Issue

Abstract

The visible-light-promoted oxidant-free decarboxylative C–H adamantylation of azoles was accomplished under ambient reaction conditions. The novel acridinium photocatalyst and cobalt synergistic catalysis enabled the C–H adamantylation under oxidant-free reaction conditions. This C–H adamantylation strategy proved viable for a wide range of substituted azoles, including benzothiazole, benzoxazole, and benzimidazoles as well as caffeine derivatives, providing an expedient access to 2-adamantyl-substituted azoles.


#

Adamantane, a strain-free molecule consisting of three fused cyclohexane rings, has attracted significant attention because of its unique structural features and properties.[1] For instance, the adamantyl moiety represents a key scaffold in several biologically active compounds[2] and clinical therapeutics.[3] The incorporation of the adamantyl group to polymers[4] and functional materials[5] significantly improves their physical properties, such as thermal stability and solubility.[6] Furthermore, the specific features of the adamantyl scaffold, including lipophilicity, steric demand, dispersion attraction, and conformational stability and rigidity expanded their presence and influence in several other important areas of research, such as supramolecular chemistry,[7] and molecular syntheses.[8] Despite the great importance of adamantyl-substituted organic compounds, the incorporation of adamantyl group into organic molecules largely relies on conventional nucleophilic substitution reactions with adamantyl halides.[8e] [9] Recently, selected examples of C–H adamantylation were reported as the part of the scope of transition-metal-catalyzed C–H alkylation protocols.[10] However, no specific methods have as of yet been reported for the C–H adamantylation of heteroarenes, in detail delineating its scope and limitations. Within our program on transition-metal-catalyzed C–H alkylation[11] and photoredox catalysis,[12] we have now devised an exceedingly mild method for the C–H adamantylation of azoles by a photoinduced[13] decarboxylative[14] C–H alkylation strategy.[15] Notable features of our approach include (i) expedient C–H adamantylation on diversely decorated azoles, (ii) non-directing group-assisted C–H functionalization, (iii) easily accessible and inexpensive 1-adamantanecarboxylic acid as reagent, (iv) visible-light-promoted C–H functionalization, (v) no stoichiometric oxidants and iridium or ruthenium photocatalysts, (vi) key mechanistic insights, and (vii) ambient reaction temperature (Scheme [1]).

Zoom Image
Scheme 1 Visible-light-induced decarboxylative C–H adamantylation

We initiated our studies by examining suitable photocatalysts (PCs) (Figure [1]), bases, and solvents under oxidant-free conditions, using an easily accessible cobaloxime complex[16] as cocatalyst for the envisioned decarboxylative C–H adamantylation of benzothiazole (1a) with adamantanecarboxylic acid (2) (Table [1]). Thus, among a set of representative photocatalysts, 9-mesityl-10-methylacridinium perchlorate (PC1) provided optimal results in a mixture of DCE/H2O (3:1) as the reaction medium (Table [1], entry 1). While a variety of bases could be utilized, the photoinduced C–H adamantylation was most effective in the presence of K2HPO4. The key importance of the photocatalyst, base, and light irradiation in the decarboxylative C–H adamantylation manifold was verified by probing the transformation in the absence of each component under otherwise identical reaction conditions (entries 17–19). Notably, the use of blue light was found beneficial to realize satisfactory yields (entries 20 and 21).

Zoom Image
Figure 1 Photocatalysts (PCs) tested in this study

Table 1 Optimization Studiesa

Entry

PC

Base (equiv)

Solvent

Yield (%)

 1

PC1

K2HPO4 (3)

DCE/H2O (3:1)

83

 2

PC2

K2HPO4 (3)

DCE/H2O (3:1)

trace

 3

PC3

K2HPO4 (3)

DCE/H2O (3:1)

11

 4

PC4

K2HPO4 (3)

DCE/H2O (3:1)

 0

 5

PC5

K2HPO4 (3)

DCE/H2O (3:1)

 0

 6

PC6

K2HPO4 (3)

DCE/H2O (3:1)

 0

 7

PC1

K2HPO4 (3)

CH2Cl2/H2O (3:1)

74

 8

PC1

K2HPO4 (3)

CHCl3/H2O (3:1)

 9

 9

PC1

K2HPO4 (3)

H2O

 7

10

PC1

K2HPO4 (3)

DCE

trace

11

PC1

Na2HPO4 (3)

DCE/H2O (3:1)

77

12

PC1

NaHCO3 (3)

DCE/H2O (3:1)

66

13

PC1

K2HPO4 (2)

DCE/H2O (3:1)

71

14

PC1

K2CO3

DCE/H2O (3:1)

25

15

PC1

KOAc

DCE/H2O (3:1)

24

16

PC1

K3PO4

DCE/H2O (3:1)

21

17

PC1

DCE/H2O (3:1)

trace

18

K2HPO4 (3)

DCE/H2O (3:1)

 0

19

PC1

K2HPO4 (3)

DCE/H2O (3:1)

 0b

20

PC1

K2HPO4 (3)

DCE/H2O (3:1)

21c

21

PC1

K2HPO4 (3)

DCE/H2O (3:1)

15d

a Reaction conditions: benzothiazole (1a; 0.4 mmol), 1-adamantanecarboxylic acid (2a; 1.2 mmol), photocatalyst PC (5.0 mol%), [Co(dmgH)(dmgH2)Cl2] (8.0 mol%), solvent (2.0 mL), 24 h under blue light irradiation (λmax = 458 nm), yield of isolated product.

b Reaction performed in the dark.

c 22 W CFL.

d 2 W green LED.

With the optimized reaction conditions in hand, we probed the scope of the reaction with a range of azoles 1 (Scheme [2]). To our delight, the visible-light-enabled decarboxylative C–H adamantylation proved broadly applicable towards a range of azoles. Thus, differently substituted benzothiazoles 1ah and benzoxazoles 1ip were efficiently transformed into the desired adamantyl-substituted products 3ap in satisfactory yields. Notably, the challenging benzimidazole 1q and caffeine derivatives 1r,s were successfully functionalized under identical reaction conditions.

Zoom Image
Scheme 2 Visible-light-induced decarboxylative C–H adamantylation of azoles 1

In consideration of the unique reactivity of the photoinduced decarboxylative C–H functionalization, we were attracted to delineate its mode of action. To probe the catalyst’s working mode, we performed an intermolecular competition experiment, which revealed electron-deficient benzothiazole 1e to be preferentially converted (Scheme [3a]). Further, we investigated a SET-type regime by the use of typical radical scavengers TEMPO, galvinoxyl, and BHT (Scheme [3b]), which significantly suppressed the catalytic efficacy.

Zoom Image
Scheme 3 Key mechanistic findings

To further elucidate the reaction mechanism of the photoinduced C–H adamantylation, we performed a series of additional experiments (Figure [2]). First, we monitored the conversion profile of the photocatalytic reaction of 1a and 2 to give 3a, which revealed the reaction being completely suppressed in the absence of light (Figure [2a]). These findings provided strong evidence for the beneficial influence of visible-light irradiation. Second, fluorescence-quenching experiments (Figure [2b–d]) revealed no quenching of the free acid 2, while both benzothiazole and the carboxylate salt quenched the excited state of acridinium photocatalyst PC1. Based on these observations, we propose the single-electron transfer to occur from PC1* to adamantane carboxylate as the key step.

Zoom Image
Figure 2 (a) The on/off light experiments. (b) Fluorescence quenching experiments of PC1* with 2. (c) Fluorescence quenching experiments of PC1* with 1a. (d) Fluorescence quenching experiments of PC1* with adamantane carboxylate.
Zoom Image
Scheme 4 Proposed mechanism for the decarboxylative C–H adamantylation

In light of these mechanistic findings, a plausible catalytic cycle for the photoinduced decarboxylative C–H adamantylation protocol is elaborated in Scheme [4]. The acridinium photocatalyst [Arc-Mes+] is initially excited to [Acr-Mes+]* by blue light absorption, which oxidizes the adamantane carboxylate anion to the oxygen-centered carboxyl radical. Then, decarboxylation forms the adamantyl radical. Subsequently, the [Acr-Mes] radical is re-oxidized to [Arc-Mes+] by the cobalt(III) species to complete the photocatalytic cycle. In the meantime, the attack of the adamantyl radical at the electrophilic C2 position of benzothiazole (1a) generates radical intermediate A. Upon deprotonation, reduction of the cobalt(II) species to cobalt(I) through SET from species A then delivers the adamantylated product 3a. Concurrently, the cobalt(III)-hydride species could be formed from the cobalt(I) species by capturing a proton generated in the reaction. Release of H2 through a reaction with another proton will regenerate the cobalt(III) species.[16c] [d] [e] [f]

In summary, we have reported on the unprecedented visible-light-enabled decarboxylative C–H adamantylation of azoles at ambient reaction temperature. The oxidant-free decarboxylative adamantylation was efficiently achieved by the aid of catalytic amounts of easily available cobalt oxime complex. A range of substituted azoles, including benzothiazole, benzoxazole, and benzimidazoles as well as caffeine derivatives, were well tolerated, providing a new general strategy to access adamantyl-substituted heterocycles motifs.

Catalytic reactions were carried out in pre-dried 10 mL vials under N2 atmosphere. In cases wherein air- or moisture-sensitive reagents were used, reactions were performed under N2 atmosphere using standard Schlenk techniques. The following substrates were prepared according to previously described procedures: Benzothiazoles 1bh,[17] benzoxales 1lp,[18] benzimidazole 1q,[19] [Co(dmgH)(dmgH2)Cl2],[20] and tetrabutylammonium adamantane carboxylate.[21] Other chemicals were obtained from commercial sources and were used without further purification, unless otherwise noted. Yields refer to isolated compounds, estimated to be >95% pure as determined by 1H NMR spectroscopy. TLC: Merck TLC silica gel 60 F254, TLC plates; detection under UV light at 254 nm. Chromatography: Separations were carried out on Merck Geduran® Silica 60 (0.040–0.063 mm, 70–230 mesh ASTM) using distilled solvents. Melting points: Stuart melting point apparatus SMP3, Barloworld Scientific, the reported values are not corrected. NMR: Spectra were recorded on Varian VX 300, Varian VNMRS 300, Bruker Avance 300, Bruker Avance 400 and 500 or Varian Inova 500 and 600 spectrometers in the solvent indicated; chemical shifts (δ) are given in ppm and referenced to the residual solvent peak. All IR spectra were recorded on a Bruker ATR FT-IR Alpha device. MS: ESI-MS-spectra as well as high-resolution mass spectrometry (HRMS) were recorded with a micrOTOF (ESI-TOF-MS), Bruker Daltonik; EI-spectra were recorded with an AccuTOF (EI-TOF) instrument from Jeol. Fluorescence emission data in solution were recorded on a Jasco® FP-8500 spectrofluorometer. The widths of excitation and emission slits were held constant at 2.5 and 5.0 nm, respectively. The scan speed was adjusted to 500 nm/min.


#

Visible-Light-Promoted Decarboxylative C–H Adamantylation; General Procedure

To an oven-dried 10 mL vial were added the heteroarene 1 (0.40 mmol, 1.0 equiv), 1-adamantanecarboxylic acid (2; 216 mg, 1.20 mmol, 3.0 equiv), K2HPO4 (209 mg, 1.20 mmol, 3.0 equiv), 9-mesityl-10-methylacridinium perchlorate (8.2 mg, 5.0 mol%), and [Co(dmgH)(dmgH2)Cl2] (11.6 mg, 8.0 mol%). After the vial was capped with a septum, it was evacuated and refilled with N2 for three times before DCE (1.5 mL) and H2O (0.5 mL) were added sequentially. If the heterocyclic substrate 1 was a liquid, it was added at this point. The mixture was degassed and stirred for 24 h under visible light irradiation (Kessil A360N, see Figure S-1 in the Supporting Information). After 24 h, the mixture was diluted with CH2Cl2 (10 mL) and H2O (10 mL), and the phases were separated. The aqueous layer was extracted with CH2Cl2 (2 × 10 mL), the combined organic phases were dried (Na2SO4), and the solvent was removed under reduced pressure. The residue was purified by column chromatography on silica gel (n-pentane or n-hexane/Et2O 20:1 to 2:1) affording the corresponding product 3.


#

2-[(3R,5R,7R)-Adamantan-1-yl]benzo[d]thiazole (3a)

The general procedure was followed using benzothiazole (1a; 54.1 mg, 0.40 mmol) and 1-adamantanecarboxylic acid (2; 216 mg, 1.20 mmol) for 24 h. After aqueous workup, purification by column chromatography on silica gel (n-pentane/Et2O 30:1) afforded 3a; yield: 89.3 mg (331 μmol, 83%); white solid; mp 103–104 °C.

IR (ATR): 2898, 2845, 1506, 1434, 1168, 999, 963, 754, 725, 680 cm–1.

1H NMR (400 MHz, CDCl3): δ = 8.00 (ddd, J = 8.2, 1.2, 0.7 Hz, 1 H), 7.86 (ddd, J = 7.2, 1.2, 0.7 Hz, 1 H), 7.44 (ddd, J = 8.2, 7.2, 1.2 Hz, 1 H), 7.32 (ddd, J = 8.2, 7.2, 1.2 Hz, 1 H), 2.18–2.12 (m, 9 H), 1.86–1.81 (m, 6 H).

13C NMR (101 MHz, CDCl3): δ = 182.3 (Cq), 153.3 (Cq), 134.5 (Cq), 125.8 (CH), 124.5 (CH), 122.8 (CH), 121.7 (CH), 43.1 (CH2), 40.3 (Cq), 36.7 (CH2), 28.7 (CH).

MS (ESI): m/z (%) = 270 ([M + H]+, 100).

HRMS (EI): m/z calcd for C17H20NS+ [M + H]+: 270.1311; found: 270.1313.

The analytical data are in accordance with those reported in the literature.[10c]


#

2-[(3R,5R,7R)-Adamantan-1-yl]-6-methylbenzo[d]thiazole (3b)

The general procedure was followed using benzothiazole 1b (59.7 mg, 0.40 mmol) and 1-adamantanecarboxylic acid (2; 216 mg, 1.20 mmol) for 24 h. After aqueous workup, purification by column chromatography on silica gel (n-pentane/Et2O 30:1) afforded 3b; yield: 60.6 mg (214 μmol, 53%); white solid; mp 132–133 °C.

IR (ATR): 2899, 2845, 1510, 1449, 1164, 1000, 835, 812, 679, 569 cm–1.

1H NMR (400 MHz, CDCl3): δ = 7.87 (d, J = 8.3 Hz, 1 H), 7.65–7.62 (m, 1 H), 7.24 (ddd, J = 8.2, 1.7, 0.6 Hz, 1 H), 2.46 (s, 3 H), 2.16–2.11 (m, 9 H), 1.83–1.80 (m, 6 H). 

13C NMR (101 MHz, CDCl3): δ = 181.2 (Cq), 151.4 (Cq), 134.6 (Cq), 134.5 (Cq), 127.3 (CH), 122.2 (CH), 121.4 (CH), 43.1 (CH2), 40.2 (Cq), 36.7 (CH2), 28.7 (CH), 21.6 (CH3).

MS (ESI): m/z (%) = 284 ([M + H]+, 100).

HRMS (ESI): m/z calcd for C18H22NS+ [M + H]+: 284.1467; found: 284.1471.

The analytical data are in accordance with those reported in the literature.[22]


#

2-[(3R,5R,7R)-Adamantan-1-yl]-6-methoxylbenzo[d]thiazole (3c)

The general procedure was followed using benzothiazole 1c (66.1 mg, 0.40 mmol) and 1-adamantanecarboxylic acid (2; 216 mg, 1.20 mmol) for 24 h. After aqueous workup, purification by column chromatography on silica gel (n-pentane/Et2O 25:1) afforded 3c; yield: 70.2 mg (234 μmol, 59%); white solid; mp 118–119 °C.

IR (neat): 2904, 1467, 1450, 1435, 1261, 1223, 1028, 1000, 834, 827 cm–1.

1H NMR (400 MHz, CDCl3): δ = 7.87 (dd, J = 8.9, 0.4 Hz, 1 H), 7.31 (d, J = 2.5 Hz, 1 H), 7.03 (dd, J = 8.9, 2.5 Hz, 1 H), 3.85 (s, 3 H), 2.15–2.11 (m, 9 H), 1.82–1.79 (m, 6 H).

13C NMR (101 MHz, CDCl3): δ = 179.8 (Cq), 157.3 (Cq), 147.8 (Cq), 135.7 (Cq), 123.2 (CH), 114.9 (CH), 104.4 (CH), 55.9 (CH3), 43.1 (CH2), 40.1 (Cq), 36.7 (CH2), 28.7 (CH).

MS (ESI): m/z (%) = 300 ([M + H]+, 100).

HRMS (ESI): m/z calcd for C18H22NOS+ [M + H]+: 300.1417; found: 300.1419.

The analytical data are in accordance with those reported in the literature.[22]


#

2-[(3R,5R,7R)-Adamantan-1-yl]-6-(trifluoromethyl)benzo[d]thiazole (3d)

The general procedure was followed using benzothiazole 1d (81.3 mg, 0.40 mmol) and 1-adamantanecarboxylic acid (2; 216 mg, 1.20 mmol) for 24 h. After aqueous workup, purification by column chromatography on silica gel (n-pentane/Et2O 30:1) afforded 3d; yield: 96.3 mg (285 μmol, 71%); white solid; mp 183–184 °C.

IR (ATR): 2911, 1317, 1278, 1163, 1112, 1085, 1001, 880, 829, 681 cm–1.

1H NMR (400 MHz, CDCl3): δ = 8.15 (dq, J = 1.8, 0.7 Hz, 1 H), 8.07 (dt, J = 8.6, 0.7 Hz, 1 H), 7.68 (ddd, J = 8.6, 1.8, 0.7 Hz, 1 H), 2.19–2.14 (m, 9 H), 1.87–1.80 (m, 6 H).

13C NMR (101 MHz, CDCl3): δ = 185.7 (Cq), 155.4 (Cq), 134.7 (Cq), 126.8 (q, 2 J C,F = 32.7 Hz, Cq), 124.4 (q, 1 J C,F = 272.0 Hz, Cq) 123.1 (CH), 122.8 (q, 3 J C,F = 3.5 Hz, CH), 119.2 (q, 3 J C,F = 4.2 Hz, CH) 43.1 (CH2), 40.7 (Cq), 36.6 (CH2), 28.7 (CH).

19F NMR (376 MHz, CDCl3): δ = –61.3 (s).

MS (ESI): m/z (%) = 338 ([M + H]+, 13), 300 (100).

HRMS (EI): m/z calcd for C18H19F3NS+ [M + H]+: 338.1185; found: 338.1188.


#

2-[(3R,5R,7R)-Adamantan-1-yl]-6-fluorobenzo[d]thiazole (3e)

The general procedure was followed using benzothiazole 1e (61.3 mg, 0.40 mmol) and 1-adamantanecarboxylic acid (2; 216 mg, 1.20 mmol) for 24 h. After aqueous workup, purification by column chromatography on silica gel (n-pentane/Et2O 30:1) afforded 3e; yield: 62.1 mg (216 μmol, 54%); white solid; mp 107–108 °C.

IR (ATR): 2911, 2889, 1454, 1245, 1161, 1001, 915, 836, 800, 791 cm–1.

1H NMR (400 MHz, CDCl3): δ = 7.91 (ddd, J = 8.9, 4.8, 0.4 Hz, 1 H), 7.52 (ddd, J = 8.2, 2.6, 0.4 Hz, 1 H), 7.16 (ddd, J = 8.9, 8.2, 2.6 Hz, 1 H), 2.16–2.12 (m, 9 H), 1.83–1.79 (m, 6 H).

13C NMR (101 MHz, CDCl3): δ = 182.0 (d, 5 J C,F = 3.1 Hz, Cq), 160.2 (d, 1 J C,F = 244.2 Hz, Cq), 149.9 (d, 4 J C,F = 1.6 Hz, Cq), 135.5 (d, 3 J C,F = 11.2 Hz, Cq), 123.6 (d, 3 J C,F = 9.4 Hz, CH), 114.3 (d, 2 J C,F = 24.6 Hz, CH), 107.8 (d, 3 J C,F = 26.4 Hz, CH), 43.1 (CH2), 40.4 (Cq), 36.6 (CH2), 28.7 (CH).

19F NMR (376 MHz, CDCl3): δ = –117.4 (s).

MS (ESI): m/z (%) = 288 ([M + H]+, 100).

HRMS (EI): m/z calcd for C17H19NSF+ [M + H]+: 288.1217; found: 288.1219.


#

2-[(3R,5R,7R)-Adamantan-1-yl]-6-chlorobenzo[d]thiazole (3f)

The general procedure was followed using benzothiazole 1f (67.9 mg, 0.40 mmol) and 1-adamantanecarboxylic acid (2; 216 mg, 1.20 mmol) for 24 h. After aqueous workup, purification by column chromatography on silica gel (n-pentane/Et2O 30:1) afforded 3f; yield: 71.8 mg (236 μmol, 59%); white solid; mp 145–146 °C.

IR (ATR): 2898, 2844, 1514, 1435, 1259, 1097, 999, 802, 768, 680 cm–1.

1H NMR (400 MHz, CDCl3): δ = 7.88 (dd, J = 8.7, 0.4 Hz, 1 H), 7.81 (dd, J = 2.1, 0.4 Hz, 1 H), 7.38 (dd, J = 8.7, 2.1 Hz, 1 H), 2.16–2.11 (m, 9 H), 1.84–1.79 (m, 6 H).

13C NMR (101 MHz, CDCl3): δ = 182.8 (Cq), 151.9 (Cq), 135.8 (Cq), 130.4 (Cq), 126.6 (CH), 123.5 (CH), 121.3 (CH), 43.1 (CH2), 40.4 (Cq), 36.6 (CH2), 28.7 (CH).

MS (ESI): m/z (%) = 304 ([M + H]+, 100).

HRMS (ESI): m/z calcd for C17H19ClNS+ [M + H]+: 304.0921; found: 304.0924.

The analytical data are in accordance with those reported in the literature.[22]


#

2-[(3R,5R,7R)-Adamantan-1-yl]-6-bromobenzo[d]thiazole (3g)

The general procedure was followed using benzothiazole 1g (85.6 mg, 0.40 mmol) and 1-adamantanecarboxylic acid (2; 216 mg, 1.20 mmol) for 24 h. After aqueous workup, purification by column chromatography on silica gel (n-pentane/Et2O 30:1) afforded 3g; yield: 75.1 mg (216 μmol, 54%); white solid; mp 182–183 °C.

IR (ATR): 2907, 2847, 1438, 1269, 1086, 1000, 860, 814, 804, 682 cm–1.

1H NMR (400 MHz, CDCl3): δ = 7.97 (dd, J = 2.0, 0.4 Hz, 1 H), 7.82 (dd, J = 8.7, 0.4 Hz, 1 H), 7.52 (dd, J = 8.7, 2.0 Hz, 1 H), 2.16–2.11 (m, 9 H), 1.83–1.78 (m, 6 H).

13C NMR (76 MHz, CDCl3): δ = 182.9 (Cq), 152.2 (Cq), 136.3 (Cq), 129.2 (CH), 124.2 (CH), 123.9 (CH), 118.0 (Cq), 43.0 (CH2), 40.4 (Cq), 36.6 (CH2), 28.6 (CH).

MS (ESI): m/z (%) = 348 ([M + H]+, 100; 79Br).

HRMS (ESI): m/z calcd for C17H19 79BrNS+ [M + H]+: 348.0416; found: 348.0420.


#

Ethyl 2-[(3R,5R,7R)-Adamantan-1-yl]benzo[d]thiazole-6-carboxylate (3h)

The general procedure was followed using benzothiazole 1h (82.9 mg, 0.40 mmol) and 1-adamantanecarboxylic acid (2; 216 mg, 1.20 mmol) for 48 h. After aqueous workup, purification by column chromatography on silica gel (n-pentane/Et2O 15:1) afforded 3h; yield: 60.0 mg (176 μmol, 44%); white solid; mp 131–133 °C.

IR (ATR): 2899, 1707, 1272, 1231, 1106, 1001, 850, 772, 730, 681 cm–1.

1H NMR (400 MHz, CDCl3): δ = 8.58 (dd, J = 1.7, 0.6 Hz, 1 H), 8.12 (dd, J = 8.6, 1.7 Hz, 1 H), 8.00 (dd, J = 8.6, 0.6 Hz, 1 H), 4.41 (q, J = 7.1 Hz, 2 H), 2.16–2.12 (m, 9 H), 1.84–1.80 (m, 6 H), 1.41 (t, J = 7.1 Hz, 3 H).

13C NMR (101 MHz, CDCl3): δ = 186.0 (Cq), 166.4 (Cq), 156.3 (Cq), 134.4 (Cq), 127.1 (CH), 126.7 (Cq), 123.9 (CH), 122.4 (CH), 61.3 (CH2), 43.0 (CH2), 40.7 (Cq), 36.6 (CH2), 28.6 (CH), 14.5 (CH3).

MS (ESI): m/z (%) = 342 [M + H]+ (100).

HRMS (EI): m/z calcd for C20H24NO2S+ [M + H]+: 342.1522; found: 342.1524.


#

2-[(3R,5R,7R)-Adamantan-1-yl]benzo[d]oxazole (3i)

The general procedure was followed using benzoxazole 1i (48.0 mg, 0.40 mmol) and 1-adamantanecarboxylic acid (2; 216 mg, 1.20 mmol) for 24 h. After aqueous workup, purification by column chromatography on silica gel (n-hexane/EtOAc 10:1) afforded 3i; yield: 56.0 mg (221 μmol, 55%); white solid; mp 99–100 °C.

IR (ATR): 2907, 2852, 1560, 1455, 1264, 1240, 1044, 736, 704 cm–1.

1H NMR (300 MHz, CDCl3): δ = 7.70–7.56 (m, 1 H), 7.46–7.35 (m, 1 H), 7.28–7.13 (m, 2 H), 2.15–1.97 (m, 9 H), 1.74 (t, J = 3.0 Hz, 6 H).

13C NMR (101 MHz, CDCl3): δ = 172.9 (Cq), 150.5 (Cq), 141.2 (Cq), 124.2 (CH), 123.9 (CH), 119.7 (CH), 110.3 (CH), 40.2 (CH2), 36.5 (CH2), 36.0 (Cq), 27.9 (CH).

MS (ESI): m/z (%) = 254 ([M + H]+, 100), 276 ([M + Na]+, 15).

HRMS (ESI): m/z calcd for C17H20NO+ [M + H]+: 254.1539; found: 254.1540.

The analytical data are in accordance with those reported in the literature.[10b]


#

2-[(3R,5R,7R)-Adamantan-1-yl]-5-methylbenzo[d]oxazole (3j)

The general procedure was followed using 5-methylbenzoxazole 1j (53.3 mg, 0.40 mmol) and 1-adamantanecarboxylic acid (2; 216 mg, 1.20 mmol) for 24 h. After aqueous workup, purification by column chromatography on silica gel (n-hexane/EtOAc 10:1) afforded 3j; yield: 61.0 mg (228 μmol, 57%); white solid; mp 94–96 °C.

IR (ATR): 2902, 2849, 1561, 1452, 1261, 1181, 1044, 923, 796 cm–1.

1H NMR (600 MHz, CDCl3): δ = 7.48–7.42 (m, 1 H), 7.32 (d, J = 8.2 Hz, 1 H), 7.06 (dd, J = 8.2, 1.7 Hz, 1 H), 2.43 (s, 3 H), 2.15–2.09 (m, 9 H), 1.79 (t, J = 3.2 Hz, 6 H).

13C NMR (126 MHz, CDCl3): δ = 172.9 (Cq), 148.6 (Cq), 141.4 (Cq), 133.5 (Cq), 125.2 (CH), 119.6 (CH), 109.6 (CH), 40.3 (CH2), 36.6 (CH2), 36.1 (Cq), 28.1 (CH), 21.5 (CH3).

MS (EI) m/z (%) = 267 ([M]+, 100), 135 (60).

HRMS (ESI): m/z calcd for C18H22NO+ [M + H]+: 268.1696; found: 268.1702.


#

2-[(3R,5R,7R)-Adamantan-1-yl]-5-chlorobenzo[d]oxazole (3k)

The general procedure was followed using 5-chlorobenzoxazole 1k (61.4 mg, 0.40 mmol) and 1-adamantanecarboxylic acid (2; 216 mg, 1.20 mmol) for 24 h. After aqueous workup, purification by column chromatography on silica gel (n-hexane/EtOAc 10:1) afforded 3k; yield: 68.0 mg (236 μmol, 59%); white solid; mp 115–116 °C.

IR (ATR): 2906, 2851, 1557, 1451, 1264, 1044, 801, 739, 704 cm–1.

1H NMR (600 MHz, CDCl3): δ = 7.63 (d, J = 2.1 Hz, 1 H), 7.37 (d, J = 8.6 Hz, 1 H), 7.23 (dd, J = 8.6, 2.1 Hz, 1 H), 2.19–2.08 (m, 9 H), 1.83–1.76 (m, 6 H).

13C NMR (126 MHz, CDCl3): δ = 174.3 (Cq), 149.0 (Cq), 142.3 (Cq), 129.3 (Cq), 124.5 (CH), 119.7 (CH), 110.9 (CH), 40.2 (CH2), 36.5 (CH2), 36.3 (Cq), 28.0 (CH).

MS (EI): m/z (%) = 287 ([M]+, 100), 135 (90).

HRMS (ESI): m/z calcd for C17H19ClNO+ [M + H]+: 288.1150; found: 288.1155.


#

2-[(3R,5R,7R)-Adamantan-1-yl]-5-(tert-butyl)benzo[d]oxazole (3l)

The general procedure was followed using benzoxazole 1l (66.1 mg, 0.40 mmol) and 1-adamantanecarboxylic acid (2; 216 mg, 1.20 mmol) for 48 h. After aqueous workup, purification by column chromatography on silica gel (n-pentane/Et2O 20:1) afforded 3l; yield: 56.0 mg (182 μmol, 45%); white solid; mp 159–160 °C.

IR (ATR): 2906, 2849, 1561, 1480, 1452, 1272, 1041, 924, 800 cm–1.

1H NMR (600 MHz, CDCl3): δ = 7.74 (dd, J = 2.0, 0.6 Hz, 1 H), 7.39 (dd, J = 8.6, 0.6 Hz, 1 H), 7.34 (dd, J = 8.6, 2.0 Hz, 1 H), 2.15–2.13 (m, 6 H), 2.12–2.10 (m, 3 H), 1.81 (t, J = 2.9 Hz, 6 H), 1.36 (s, 9 H).

13C NMR (126 MHz, CDCl3): δ = 173.2 (Cq), 148.5 (Cq), 147.5 (Cq), 141.2 (Cq), 121.9 (CH), 116.4 (CH), 109.5 (CH), 40.5 (CH2), 36.7 (CH2), 36.3 (Cq), 35.0 (Cq), 32.0 (CH3), 28.2 (CH).

MS (ESI): m/z (%) = 332 ([M + Na]+, 2), 310 ([M + H]+, 100).

HRMS (EI): m/z calcd for C21H28NO [M + H]+: 310.2165; found: 310.2168.


#

2-[(3R,5R,7R)-Adamantan-1-yl]-5-bromobenzo[d]oxazole (3m)

The general procedure was followed using benzoxazole 1m (79.2 mg, 0.40 mmol) and 1-adamantanecarboxylic acid (2; 216 mg, 1.20 mmol). After aqueous workup, purification by column chromatography on silica gel (n-pentane/Et2O 20:1) afforded 3m; yield: 56.1 mg (169 μmol, 42%); white solid; mp 135–136 °C.

IR (ATR): 2905, 2849, 1555, 1444, 1253, 1040, 907, 871, 798, 682 cm–1.

1H NMR (600 MHz, CDCl3): δ = 7.80 (d, J = 1.9 Hz, 1 H), 7.38 (dd, J = 8.4, 1.9 Hz, 1 H), 7.34 (d, J = 8.4 Hz, 1 H), 2.14–2.11 (m, 9 H), 1.84–1.77 (m, 6 H).

13C NMR (126 MHz, CDCl3): δ = 174.2 (Cq), 150.0 (Cq), 143.0 (Cq), 127.3 (CH), 122.8 (CH), 116.7 (Cq), 111.6 (CH), 40.3 (CH2), 36.6 (CH2), 36.4 (Cq), 28.1 (CH).

MS (ESI): m/z (%) = 334 ([M + H]+, 97; 81Br), 332 ([M + H]+, 100; 79Br).

HRMS (ESI): m/z calcd for C17H19 79BrNO+ [M + H]+: 332.0645; found: 332.0648.


#

2-[(3R,5R,7R)-Adamantan-1-yl]-6-methylbenzo[d]oxazole (3n)

The general procedure was followed using benzoxazole 1n (53.3 mg, 0.40 mmol) and 1-adamantanecarboxylic acid (2; 216 mg, 1.20 mmol) for 48 h. After aqueous workup, purification by column chromatography on silica gel (n-pentane/Et2O 20:1) afforded 3n; yield: 53.0 mg (198 μmol, 50%); white solid; mp 112–114 °C.

IR (ATR): 2908, 2849, 1566, 1451, 1263, 1234, 1040, 919, 809, 602 cm–1.

1H NMR (400 MHz, CDCl3): δ = 7.55 (d, J = 8.1 Hz, 1 H), 7.29–7.27 (m, 1 H), 7.11–7.08 (m, 1 H), 2.46 (s, 3 H), 2.16–2.10 (m, 9 H), 1.83–1.79 (m, 6 H).

13C NMR (101 MHz, CDCl3): δ = 172.6 (Cq), 150.9 (Cq), 139.1 (Cq), 134.7 (Cq), 125.2 (CH), 119.1 (CH), 110.7 (CH), 40.4 (CH2), 36.6 (CH2), 36.2 (Cq), 28.1 (CH), 21.8 (CH3).

MS (ESI): m/z (%) = 290 ([M + Na]+, 9), 268 ([M + H]+, 100).

HRMS (EI): m/z calcd for C18H22NO [M + H]+: 268.1696; found: 268.1697.


#

2-[(3R,5R,7R)-Adamantan-1-yl]-6-chlorobenzo[d]oxazole (3o)

The general procedure was followed using benzoxazole 1o (50.2.1 mg, 0.40 mmol) and 1-adamantanecarboxylic acid (2; 216 mg, 1.20 mmol) for 48 h. After aqueous workup, purification by column chromatography on silica gel (n-pentane/Et2O 10:1) afforded 3o; yield: 52.5 mg (182 μmol, 46%); white solid; mp 150–152 °C.

IR (ATR): 2915, 2851, 1609, 1564, 1460, 1039, 819, 800, 702, 599 cm–1.

1H NMR (400 MHz, CDCl3): δ = 7.58 (dd, J = 8.5, 0.4 Hz, 1 H), 7.50–7.46 (m, 1 H), 7.26 (dd, J = 8.5, 2.0 Hz, 1 H), 2.16–2.10 (m, 9 H), 1.84–1.78 (m, 6 H).

13C NMR (101 MHz, CDCl3): δ = 173.8 (Cq), 150.9 (Cq), 140.2 (Cq), 130.0 (Cq), 124.7 (CH), 120.3 (CH), 111.2 (CH), 40.3 (CH2), 36.6 (CH2), 36.3 (Cq), 28.0 (CH).

MS (ESI): m/z (%) = 288 ([M + H]+, 60).

HR MS (EI): m/z calcd for C17H19ClNO [M + H]+: 288.1150; found: 288.1153.


#

tert-Butyl 2-[(3R,5R,7R)-Adamantan-1-yl]benzo[d]oxazole-6-carboxylate (3p)

The general procedure was followed using benzoxazole 1p (87.7 mg, 0.40 mmol) and 1-adamantanecarboxylic acid (2; 216 mg, 1.20 mmol) for 48 h. After aqueous workup, purification by column chromatography on silica gel (n-pentane/Et2O 10:1) afforded 3p; yield: 52.8 mg (161 μmol, 40%); white solid; mp 116–118 °C.

IR (ATR): 2904, 1710, 1291, 1268, 1244, 1154, 1044, 943, 777 cm–1.

1H NMR (400 MHz, CDCl3): δ = 8.12 (dd, J = 1.5, 0.6 Hz, 1 H), 7.98 (dd, J = 8.3, 1.5 Hz, 1 H), 7.67 (dd, J = 8.3, 0.6 Hz, 1 H), 2.17–2.10 (m, 9 H), 1.83–1.79 (m, 6 H), 1.60 (s, 9 H).

13C NMR (101 MHz, CDCl3): δ = 175.6 (Cq), 165.5 (Cq), 150.3 (Cq), 145.0 (Cq), 128.6 (Cq), 125.8 (CH), 119.1 (CH), 112.0 (CH), 81.3 (Cq), 40.2 (CH2), 36.5 (CH2), 36.5 (Cq), 28.4 (CH3), 28.0 (CH).

MS (ESI): m/z (%) = 354 ([M + H]+, 100), 298 (14).

HR-MS (EI): m/z calcd for C22H28NO3 [M + H]+: 354.2064; found: 354.2064.


#

2-[(3R,5R,7R)-Adamantan-1-yl]-1-phenyl-1H-benzo[d]imidazole (3q)

The general procedure was followed using 1-phenylbenzimidazole 1q (78.0 mg, 0.40 mmol) and 1-adamantanecarboxylic acid (2; 216 mg, 1.20 mmol) for 48 h. After aqueous workup, purification by column chromatography on silica gel (n-hexane/EtOAc 10:2) afforded 3q; yield: 80.0 mg (244 μmol, 61%); white solid; mp 185–187 °C.

IR (ATR): 2904, 2850, 1498, 1454, 1375, 1264, 737, 700 cm–1.

1H NMR (600 MHz, CDCl3): δ = 7.78 (dt, J = 8.0, 0.9 Hz, 1 H), 7.55–7.51 (m, 3 H), 7.37–7.33 (m, 2 H), 7.21 (ddd, J = 8.2, 7.1, 1.2 Hz, 1 H), 7.10 (ddd, J = 8.2, 7.1, 1.2 Hz, 1 H), 6.71 (dt, J = 8.0, 0.9 Hz, 1 H), 2.05 (d, J = 2.9 Hz, 6 H), 2.00–1.89 (m, 3 H), 1.69–1.54 (m, 6 H).

13C NMR (126 MHz, CDCl3): δ = 161.1 (Cq), 141.2 (Cq), 140.0 (Cq), 138.2 (Cq), 129.3 (CH), 129.3 (CH), 129.2 (CH), 122.3 (CH), 121.9 (CH), 119.0 (CH), 109.9 (CH), 41.4 (CH2), 37.7 (Cq), 36.5 (CH2), 28.4 (CH).

MS (EI) m/z (%) = 328 ([M]+, 70), 327 (100), 271 (30).

HRMS (ESI): m/z calcd for C23H25N2 + [M + H]+: 329.2012; found: 329.2018.


#

8-[(3R,5R,7R)-Adamantan-1-yl]-1,3,7-trimethyl-3,7-dihydro-1H-purine-2,6-dione (3r)

The general procedure was followed using caffeine (1r; 77.6 mg, 0.40 mmol) and 1-adamantanecarboxylic acid (2; 180 mg, 1.20 mmol) for 48 h. After aqueous workup, purification by column chromatography on silica gel (n-pentane/Et2O 1:1) afforded 3r; yield: 80.4 mg (245 μmol, 61%); white solid; mp 263–264 °C.

IR (ATR): 2895, 1700, 1660, 1539, 1426, 1361, 1223, 982, 743 cm–1.

1H NMR (400 MHz, CDCl3): δ = 4.15 (s, 3 H), 3.54 (s, 3 H), 3.37 (s, 3 H), 2.16–2.08 (m, 9 H), 1.81–1.74 (m, 6 H).

13C NMR (101 MHz, CDCl3): δ = 159.6 (Cq), 155.8 (Cq), 151.9 (Cq), 147.2 (Cq), 108.2 (Cq), 40.0 (CH2), 36.9 (Cq), 36.6 (CH2), 34.5 (CH3), 29.7 (CH3), 28.3 (CH), 28.0 (CH3).

MS (ESI): m/z (%) = 329 ([M + H]+, 100).

HRMS (EI): m/z calcd for C18H25N4O2 + [M + H]+: 329.1972; found: 329.1969.

The analytical data are in accordance with those reported in the literature.[23]


#

8-[(3R,5R,7R)-Adamantan-1-yl]-7-[2-(methoxymethoxy)propyl]-1,3-dimethyl-3,7-dihydro-1H-purine-2,6-dione (3s)

The general procedure was followed using substrate 1s (85.0 mg, 0.30 mmol) and 1-adamantanecarboxylic acid (2; 162 mg, 0.90 mmol) for 48 h. After aqueous workup, purification by column chromatography on silica gel (n-pentane/Et2O 10:1) afforded 3s; yield: 53.5 mg (129 μmol, 43%); white solid; mp 147–148 °C.

IR (ATR): 2890, 1165, 1536, 1426, 1382, 1137, 1105, 1035, 743 cm–1.

1H NMR (400 MHz, CDCl3): δ = 4.55–4.46 (m, 2 H), 4.41 (dd, J = 14.0, 3.6 Hz, 1 H), 4.28–4.22 (m, 2 H), 3.56 (s, 3 H), 3.38 (s, 3 H), 3.01 (s, 3 H), 2.25–2.06 (m, 9 H), 1.80–1.75 (m, 6 H), 1.27 (d, J = 6.3 Hz, 3 H).

13C NMR (101 MHz, CDCl3): δ = 160.8 (Cq), 155.4 (Cq), 151.9 (Cq), 147.8 (Cq), 107.6 (Cq), 95.3 (CH2), 73.1 (CH), 55.2 (CH3), 52.4 (CH2), 41.4 (CH2), 37.6 (Cq), 36.6 (CH2), 29.7 (CH3), 28.5 (CH), 28.1 (CH3), 18.4 (CH3).

MS (ESI): m/z (%) = 439 ([M + Na]+, 100), 417 ([M + H]+, 99).

HRMS (ESI): m/z calcd for C22H32N4O4Na+ [M + Na]+: 439.2316; found: 439.2319.


#

Competition Experiment

The general procedure was followed using benzothiazoles 1e (61.3 mg, 0.40 mmol) and 1b (59.7 mg, 0.40 mmol) as well as 1-adamantanecarboxylic acid (2; 72.0 mg, 0.40 mmol). After aqueous workup and removal of the remaining solvent, the crude mixture was analyzed by 1H/19F NMR spectroscopy using 4-fluoroanisole as internal standard (14.5 mg, 0.115 mmol).


#

Reaction in the Presence of Radical Scavengers

The general procedure was followed using benzothiazole (1a; 54.1 mg, 0.40 mmol), 1-adamantanecarboxylic acid (2; 216 mg, 1.20 mmol) and radical scavengers (1–3 equiv) for 24 h. After aqueous workup, purification by column chromatography on silica gel (n-pentane/Et2O 10:1) yielded 3a.


#

On/Off Plot

According to the general procedure, five independent reactions were set up and placed in front of the blue LEDs. The reaction mixtures were sequentially stirred under visible light irradiation and in the absence of light. Every 2 h a reaction vial was removed from the setup and workup was performed according to the general procedure. After a total of 10 h, the obtained isolated yields were plotted with respect to the reaction time.


#

Fluorescence Quenching Experiments

Sample solutions were prepared in DCE with [Acr-Mes]+(ClO4) concentration of c = 1.6 × 10–7 M and varying concentrations of the respective quencher (added to each sample from a stock solution). The sample solutions were degassed prior to measurement by sparging with N2. Stern–Volmer experiments were conducted with a fixed excitation wavelength of 430 nm and detection at 518 nm (emission maximum). Plotting of the I0/I value against the concentration of the potential quencher resulted in the graphs (Figures [2b]–d).


#
#

Acknowledgment

Generous supports by the Alexander von Humboldt Foundation (fellowship to P.G.) and the DFG (Gottfried-Wilhelm-Leibniz prize to L. A.) are gratefully acknowledged.

Supporting Information

  • References

    • 1a Kahl P, Wagner JP, Balestrieri C, Becker J, Hausmann H, Bodwell GJ, Schreiner PR. Angew. Chem. Int. Ed. 2016; 55: 9277
    • 1b Wanka L, Iqbal K, Schreiner PR. Chem. Rev. 2013; 113: 3516
    • 1c Schwertfeger H, Fokin AA, Schreiner PR. Angew. Chem. Int. Ed. 2008; 47: 1022
    • 1d Hrdina R. Synthesis 2018; 50: in press ; DOI: 10.1055/s-0037-1610321
    • 1e Fort RC, von R Schleyer P. Chem. Rev. 1964; 64: 277
    • 2a Luo W, Tweedie D, Beedie SL, Vargesson N, Figg WD, Greig NH, Scerba MT. Bioorg. Med. Chem. 2018; 26: 1547
    • 2b Ghosh AK, Osswald HL, Glauninger K, Agniswamy J, Wang Y.-F, Hayashi H, Aoki M, Weber IT, Mitsuya H. J. Med. Chem. 2016; 59: 6826
    • 2c Balzarini J, Orzeszko-Krzesińska B, Maurin JK, Orzeszko A. Eur. J. Med. Chem. 2009; 44: 303
    • 2d Yu Z, Sawkar AR, Whalen LJ, Wong C.-H, Kelly JW. J. Med. Chem. 2007; 50: 94
    • 2e Stern E, Muccioli GG, Bosier B, Hamtiaux L, Millet R, Poupaert JH, Hénichart J.-P, Depreux P, Goossens J.-F, Lambert DM. J. Med. Chem. 2007; 50: 5471
    • 2f Farhana L, Dawson MI, Leid M, Wang L, Moore DD, Liu G, Xia Z, Fontana JA. Cancer Res. 2007; 67: 318
    • 2g Raun K, von Voss P, Gotfredsen CF, Golozoubova V, Rolin B, Knudsen LB. Diabetes 2006; 56: 8
    • 2h Motornaya AE, Alimbarova LM, Shokova ÉA, Kovalev VV. Pharm. Chem. J. 2006; 40: 68
    • 2i Long J, Manchandia T, Ban K, Gao S, Miller C, Chandra J. Cancer Chemother. Pharmacol. 2006; 59: 527
    • 2j Jensen LS, Bølcho U, Egebjerg J, Strømgaard K. ChemMedChem 2006; 1: 419
    • 2k Farhana L, Dawson MI, Fontana JA. Cancer Res. 2005; 65. 4909
    • 2l Villhauer EB, Brinkman JA, Naderi GB, Burkey BF, Dunning BE, Prasad K, Mangold BL, Russell ME, Hughes TE. J. Med. Chem. 2003; 46: 2774
  • 3 Liu J, Obando D, Liao V, Lifa T, Codd R. Eur. J. Med. Chem. 2011; 46: 1949
    • 4a Moers C, Wrazidlo R, Natalello A, Netz I, Mondeshki M, Frey H. Macromol. Rapid Commun. 2014; 35: 1075
    • 4b Chen Y, Spiering AJ. H, Karthikeyan S, Peters GW. M, Meijer EW, Sijbesma RP. Nat. Chem. 2012; 4: 559
    • 4c Jensen JJ, Grimsley M, Mathias LJ. J. Polym. Sci., Part A: Polym. Chem. 1996; 34: 397
    • 4d Matsumoto A, Tanaka S, Otsu T. Macromolecules 1991; 24: 4017
    • 5a Wada Y, Kubo S, Kaji H. Adv. Mater. 2018; 30: 1705641
    • 5b Rosemann NW, Locke H, Schreiner PR, Chatterjee S. Adv. Optical Mater. 2018; 6: 1701162
    • 5c Kovalenko A, Yumusak C, Heinrichova P, Stritesky S, Fekete L, Vala M, Weiter M, Sariciftci NS, Krajcovic J. J. Mater. Chem. C 2017; 5: 4716
    • 6a Gunawan MA, Moncea O, Poinsot D, Keskes M, Domenichini B, Heintz O, Chassagnon R, Herbst F, Carlson RM. K, Dahl JE. P, Fokin AA, Schreiner PR, Hierso J.-C. Adv. Funct. Mater. 2018; 28: 1705786
    • 6b Rander T, Bischoff T, Knecht A, Wolter D, Richter R, Merli A, Möller T. J. Am. Chem. Soc. 2017; 139: 11132
    • 6c Wagner JP, Schreiner PR. Angew. Chem. Int. Ed. 2015; 54: 12274
    • 6d Ackermann L. Org. Lett. 2005; 7: 3123
    • 7a Löffler S, Lübben J, Wuttke A, Mata RA, John M, Dittrich B, Clever GH. Chem. Sci. 2016; 7: 4676
    • 7b Vícha R, Rouchal M, Kozubková Z, Kuřitka I, Marek R, Branná P, Čmelík R. Supramol. Chem. 2011; 23: 663
    • 7c Liu H, Zhang Y, Hu J, Li C, Liu S. Macromol. Chem. Phys. 2009; 210: 2125
    • 7d Kretschmann O, Steffens C, Ritter H. Angew. Chem. Int. Ed. 2007; 46: 2708
    • 8a Larrosa M, Zonker B, Volkmann J, Wech F, Logemann C, Hausmann H, Hrdina R. Chem. Eur. J. 2018; 24: 6269
    • 8b Hrdina R, Larrosa M, Logemann C. J. Org. Chem. 2017; 82: 4891
    • 8c Larrosa M, Heiles S, Becker J, Spengler B, Hrdina R. Adv. Synth. Catal. 2016; 358: 2163
    • 8d Chen L, Ren P, Carrow BP. J. Am. Chem. Soc. 2016; 138: 6392
    • 8e Shadrikova VA, Golovin EV, Klimochkin YN. Chem. Heterocycl. Compd. 2015; 50: 1586
    • 8f Hrdina R, Metz FM, Larrosa M, Berndt J.-P, Zhygadlo YY, Becker S, Becker J. Eur. J. Org. Chem. 2015; 6231
    • 8g Sämann C, Dhayalan V, Schreiner PR, Knochel P. Org. Lett. 2014; 16: 2418
    • 8h Liu M, Chen Y, Fu N. Synth. Commun. 2013; 43: 1055
    • 8i Punji B, Emge TJ, Goldman AS. Organometallics 2010; 29: 2702
    • 8j Mella M, Freccero M, Soldi T, Fasani E, Albini A. J. Org. Chem. 1996; 61: 1413
    • 9a Raenko GF, Korotkikh NI, Pekhtereva TM, Shvaika OP. Russ. J. Org. Chem. 2001; 37: 1153
    • 9b Cabildo P, Claramunt RM, Forfar I, Elguero J. Tetrahedron Lett. 1994; 35: 183
    • 10a Fu Y, Shang R, Wang G.-Z. Synthesis 2018; 50: 2908
    • 10b Zhou W.-J, Cao G.-M, Shen G, Zhu X.-Y, Gui Y.-Y, Ye J.-H, Sun L, Liao L.-L, Li J, Yu D.-G. Angew. Chem. Int. Ed. 2017; 56: 15683
    • 10c Wu X, See JW. T, Xu K, Hirao H, Roger J, Hierso J.-C, Zhou JS. Angew. Chem. Int. Ed. 2014; 53: 13573
    • 11a Ghorai D, Finger LH, Zanoni G, Ackermann L. ACS Catal. 2018; 8: 11657
    • 11b Gandeepan P, Ackermann L. Chem 2018; 4: 199
    • 11c Zell D, Bursch M, Müller V, Grimme S, Ackermann L. Angew. Chem. Int. Ed. 2017; 56: 10378
    • 11d Liu W, Cera G, Oliveira JC. A, Shen Z, Ackermann L. Chem. Eur. J. 2017; 23: 11524
    • 11e Moselage M, Li J, Kramm F, Ackermann L. Angew. Chem. Int. Ed. 2017; 56: 5341
    • 11f Li J, Korvorapun K, De Sarkar S, Rogge T, Burns DJ, Warratz S, Ackermann L. Nat. Commun. 2017; 8: 15430
    • 11g Song W, Lackner S, Ackermann L. Angew. Chem. Int. Ed. 2014; 53: 2477
    • 11h Ackermann L. J. Org. Chem. 2014; 79: 8948
    • 11i Hofmann N, Ackermann L. J. Am. Chem. Soc. 2013; 135: 5877
    • 11j Ackermann L. Chem. Commun. 2010; 46: 4866
    • 11k Ackermann L, Novák P, Vicente R, Hofmann N. Angew. Chem. Int. Ed. 2009; 48: 6045
    • 12a Liang Y.-F, Steinbock R, Yang L, Ackermann L. Angew. Chem. Int. Ed. 2018; 57: 10625
    • 12b Gandeepan P, Mo J, Ackermann L. Chem. Commun. 2017; 53: 5906
    • 12c Yang F, Koeller J, Ackermann L. Angew. Chem. Int. Ed. 2016; 55: 4759
    • 13a Strieth-Kalthoff F, James MJ, Teders M, Pitzer L, Glorius F. Chem. Soc. Rev. 2018; 47: 7190
    • 13b Twilton J, Le C, Zhang P, Shaw MH, Evans RW, MacMillan DW. C. Nat. Rev. Chem. 2017; 1: 0052
    • 13c Matsui JK, Lang SB, Heitz DR, Molander GA. ACS Catal. 2017; 7: 2563
    • 13d Skubi KL, Blum TR, Yoon TP. Chem. Rev. 2016; 116: 10035
    • 13e Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
    • 13f Miller DC, Tarantino KT, Knowles RR. Top. Curr. Chem. 2016; 374: 30
    • 13g Kärkäs MD, Porco JA, Stephenson CR. J. Chem. Rev. 2016; 116: 9683
    • 13h Fagnoni M, Dondi D, Ravelli D, Albini A. Chem. Rev. 2007; 107: 2725
    • 14a Schwarz J, König B. Green Chem. 2018; 20: 323
    • 14b Kumar NY. P, Rogge T, Yetra SR, Bechtoldt A, Clot E, Ackermann L. Chem. Eur. J. 2017; 23: 17449
    • 14c Wei Y, Hu P, Zhang M, Su W. Chem. Rev. 2017; 117: 8864
    • 14d Kumar NY. P, Bechtoldt A, Raghuvanshi K, Ackermann L. Angew. Chem. Int. Ed. 2016; 55: 6929
    • 15a Wang J, Li G.-X, He G, Chen G. Asian J. Org. Chem. 2018; 7: 1307
    • 15b Sun AC, McClain EJ, Beatty JW, Stephenson CR. J. Org. Lett. 2018; 20: 3487
    • 15c Ren L, Cong H. Org. Lett. 2018; 20: 3225
    • 15d Proctor RS. J, Davis HJ, Phipps RJ. Science 2018; 360: 419
    • 15e McAtee RC, Beatty JW, McAtee CC, Stephenson CR. J. Org. Lett. 2018; 20: 3491
    • 15f Liu X, Liu Y, Chai G, Qiao B, Zhao X, Jiang Z. Org. Lett. 2018; 20: 6298
    • 15g Guo J, Wu Q.-L, Xie Y, Weng J, Lu G. J. Org. Chem. 2018; 83: 12559
    • 15h Genovino J, Lian Y, Zhang Y, Hope TO, Juneau A, Gagné Y, Ingle G, Frenette M. Org. Lett. 2018; 20: 3229
    • 15i Kammer LM, Rahman A, Opatz T. Molecules 2018; 23: 764
    • 15j Sakamoto R, Kashiwagi H, Maruoka K. Org. Lett. 2017; 19: 5126
    • 15k Jin Y, Fu H. Asian J. Org. Chem. 2017; 6: 368
    • 15l Garza-Sanchez RA, Tlahuext-Aca A, Tavakoli G, Glorius F. ACS Catal. 2017; 7: 4057
    • 15m Huang H, Jia K, Chen Y. ACS Catal. 2016; 6: 4983
    • 15n Xuan J, Zhang Z.-G, Xiao W.-J. Angew. Chem. Int. Ed. 2015; 54: 15632
    • 15o Cheng W.-M, Shang R, Fu Y. ACS Catal. 2016; 7: 907
    • 15p Lackner GL, Quasdorf KW, Overman LE. J. Am. Chem. Soc. 2013; 135: 15342
    • 16a Yi H, Niu L, Song C, Li Y, Dou B, Singh AK, Lei A. Angew. Chem. Int. Ed. 2017; 56: 1120
    • 16b Yang Q, Zhang L, Ye C, Luo S, Wu L.-Z, Tung C.-H. Angew. Chem. Int. Ed. 2017; 56: 3694
    • 16c Niu L, Yi H, Wang S, Liu T, Liu J, Lei A. Nat. Commun. 2017; 8: 14226
    • 16d He K.-H, Tan F.-F, Zhou C.-Z, Zhou G.-J, Yang X.-L, Li Y. Angew. Chem. Int. Ed. 2017; 56: 3080
    • 16e Zheng Y.-W, Chen B, Ye P, Feng K, Wang W, Meng Q.-Y, Wu L.-Z, Tung C.-H. J. Am. Chem. Soc. 2016; 138: 10080
    • 16f Xiang M, Meng Q.-Y, Li J.-X, Zheng Y.-W, Ye C, Li Z.-J, Chen B, Tung C.-H, Wu L.-Z. Chem. Eur. J. 2015; 21: 18080
  • 17 Yu M, Wang B, Zhou P, Jia X, Yuan Y. ChemistrySelect 2016; 1: 6217
  • 18 Yu D, Lu L, Shen Q. Org. Lett. 2013; 15: 940
  • 19 Bolaño T, Esteruelas MA, Fernández I, Oñate E, Palacios A, Tsai J.-Y, Xia C. Organometallics 2015; 34: 778
  • 20 Hou S, Yang H, Cheng B, Zhai H, Li Y. Chem. Commun. 2017; 53: 6926
  • 21 Galicia M, González FJ. J. Electrochem. Soc. 2002; 149: D46
  • 22 Fiorentino M, Testaferri L, Tiecco M, Troisi L. J. Chem. Soc., Perkin Trans. 2 1977; 1679
  • 23 McCallum T, Barriault L. Chem. Sci. 2016; 7: 4754

  • References

    • 1a Kahl P, Wagner JP, Balestrieri C, Becker J, Hausmann H, Bodwell GJ, Schreiner PR. Angew. Chem. Int. Ed. 2016; 55: 9277
    • 1b Wanka L, Iqbal K, Schreiner PR. Chem. Rev. 2013; 113: 3516
    • 1c Schwertfeger H, Fokin AA, Schreiner PR. Angew. Chem. Int. Ed. 2008; 47: 1022
    • 1d Hrdina R. Synthesis 2018; 50: in press ; DOI: 10.1055/s-0037-1610321
    • 1e Fort RC, von R Schleyer P. Chem. Rev. 1964; 64: 277
    • 2a Luo W, Tweedie D, Beedie SL, Vargesson N, Figg WD, Greig NH, Scerba MT. Bioorg. Med. Chem. 2018; 26: 1547
    • 2b Ghosh AK, Osswald HL, Glauninger K, Agniswamy J, Wang Y.-F, Hayashi H, Aoki M, Weber IT, Mitsuya H. J. Med. Chem. 2016; 59: 6826
    • 2c Balzarini J, Orzeszko-Krzesińska B, Maurin JK, Orzeszko A. Eur. J. Med. Chem. 2009; 44: 303
    • 2d Yu Z, Sawkar AR, Whalen LJ, Wong C.-H, Kelly JW. J. Med. Chem. 2007; 50: 94
    • 2e Stern E, Muccioli GG, Bosier B, Hamtiaux L, Millet R, Poupaert JH, Hénichart J.-P, Depreux P, Goossens J.-F, Lambert DM. J. Med. Chem. 2007; 50: 5471
    • 2f Farhana L, Dawson MI, Leid M, Wang L, Moore DD, Liu G, Xia Z, Fontana JA. Cancer Res. 2007; 67: 318
    • 2g Raun K, von Voss P, Gotfredsen CF, Golozoubova V, Rolin B, Knudsen LB. Diabetes 2006; 56: 8
    • 2h Motornaya AE, Alimbarova LM, Shokova ÉA, Kovalev VV. Pharm. Chem. J. 2006; 40: 68
    • 2i Long J, Manchandia T, Ban K, Gao S, Miller C, Chandra J. Cancer Chemother. Pharmacol. 2006; 59: 527
    • 2j Jensen LS, Bølcho U, Egebjerg J, Strømgaard K. ChemMedChem 2006; 1: 419
    • 2k Farhana L, Dawson MI, Fontana JA. Cancer Res. 2005; 65. 4909
    • 2l Villhauer EB, Brinkman JA, Naderi GB, Burkey BF, Dunning BE, Prasad K, Mangold BL, Russell ME, Hughes TE. J. Med. Chem. 2003; 46: 2774
  • 3 Liu J, Obando D, Liao V, Lifa T, Codd R. Eur. J. Med. Chem. 2011; 46: 1949
    • 4a Moers C, Wrazidlo R, Natalello A, Netz I, Mondeshki M, Frey H. Macromol. Rapid Commun. 2014; 35: 1075
    • 4b Chen Y, Spiering AJ. H, Karthikeyan S, Peters GW. M, Meijer EW, Sijbesma RP. Nat. Chem. 2012; 4: 559
    • 4c Jensen JJ, Grimsley M, Mathias LJ. J. Polym. Sci., Part A: Polym. Chem. 1996; 34: 397
    • 4d Matsumoto A, Tanaka S, Otsu T. Macromolecules 1991; 24: 4017
    • 5a Wada Y, Kubo S, Kaji H. Adv. Mater. 2018; 30: 1705641
    • 5b Rosemann NW, Locke H, Schreiner PR, Chatterjee S. Adv. Optical Mater. 2018; 6: 1701162
    • 5c Kovalenko A, Yumusak C, Heinrichova P, Stritesky S, Fekete L, Vala M, Weiter M, Sariciftci NS, Krajcovic J. J. Mater. Chem. C 2017; 5: 4716
    • 6a Gunawan MA, Moncea O, Poinsot D, Keskes M, Domenichini B, Heintz O, Chassagnon R, Herbst F, Carlson RM. K, Dahl JE. P, Fokin AA, Schreiner PR, Hierso J.-C. Adv. Funct. Mater. 2018; 28: 1705786
    • 6b Rander T, Bischoff T, Knecht A, Wolter D, Richter R, Merli A, Möller T. J. Am. Chem. Soc. 2017; 139: 11132
    • 6c Wagner JP, Schreiner PR. Angew. Chem. Int. Ed. 2015; 54: 12274
    • 6d Ackermann L. Org. Lett. 2005; 7: 3123
    • 7a Löffler S, Lübben J, Wuttke A, Mata RA, John M, Dittrich B, Clever GH. Chem. Sci. 2016; 7: 4676
    • 7b Vícha R, Rouchal M, Kozubková Z, Kuřitka I, Marek R, Branná P, Čmelík R. Supramol. Chem. 2011; 23: 663
    • 7c Liu H, Zhang Y, Hu J, Li C, Liu S. Macromol. Chem. Phys. 2009; 210: 2125
    • 7d Kretschmann O, Steffens C, Ritter H. Angew. Chem. Int. Ed. 2007; 46: 2708
    • 8a Larrosa M, Zonker B, Volkmann J, Wech F, Logemann C, Hausmann H, Hrdina R. Chem. Eur. J. 2018; 24: 6269
    • 8b Hrdina R, Larrosa M, Logemann C. J. Org. Chem. 2017; 82: 4891
    • 8c Larrosa M, Heiles S, Becker J, Spengler B, Hrdina R. Adv. Synth. Catal. 2016; 358: 2163
    • 8d Chen L, Ren P, Carrow BP. J. Am. Chem. Soc. 2016; 138: 6392
    • 8e Shadrikova VA, Golovin EV, Klimochkin YN. Chem. Heterocycl. Compd. 2015; 50: 1586
    • 8f Hrdina R, Metz FM, Larrosa M, Berndt J.-P, Zhygadlo YY, Becker S, Becker J. Eur. J. Org. Chem. 2015; 6231
    • 8g Sämann C, Dhayalan V, Schreiner PR, Knochel P. Org. Lett. 2014; 16: 2418
    • 8h Liu M, Chen Y, Fu N. Synth. Commun. 2013; 43: 1055
    • 8i Punji B, Emge TJ, Goldman AS. Organometallics 2010; 29: 2702
    • 8j Mella M, Freccero M, Soldi T, Fasani E, Albini A. J. Org. Chem. 1996; 61: 1413
    • 9a Raenko GF, Korotkikh NI, Pekhtereva TM, Shvaika OP. Russ. J. Org. Chem. 2001; 37: 1153
    • 9b Cabildo P, Claramunt RM, Forfar I, Elguero J. Tetrahedron Lett. 1994; 35: 183
    • 10a Fu Y, Shang R, Wang G.-Z. Synthesis 2018; 50: 2908
    • 10b Zhou W.-J, Cao G.-M, Shen G, Zhu X.-Y, Gui Y.-Y, Ye J.-H, Sun L, Liao L.-L, Li J, Yu D.-G. Angew. Chem. Int. Ed. 2017; 56: 15683
    • 10c Wu X, See JW. T, Xu K, Hirao H, Roger J, Hierso J.-C, Zhou JS. Angew. Chem. Int. Ed. 2014; 53: 13573
    • 11a Ghorai D, Finger LH, Zanoni G, Ackermann L. ACS Catal. 2018; 8: 11657
    • 11b Gandeepan P, Ackermann L. Chem 2018; 4: 199
    • 11c Zell D, Bursch M, Müller V, Grimme S, Ackermann L. Angew. Chem. Int. Ed. 2017; 56: 10378
    • 11d Liu W, Cera G, Oliveira JC. A, Shen Z, Ackermann L. Chem. Eur. J. 2017; 23: 11524
    • 11e Moselage M, Li J, Kramm F, Ackermann L. Angew. Chem. Int. Ed. 2017; 56: 5341
    • 11f Li J, Korvorapun K, De Sarkar S, Rogge T, Burns DJ, Warratz S, Ackermann L. Nat. Commun. 2017; 8: 15430
    • 11g Song W, Lackner S, Ackermann L. Angew. Chem. Int. Ed. 2014; 53: 2477
    • 11h Ackermann L. J. Org. Chem. 2014; 79: 8948
    • 11i Hofmann N, Ackermann L. J. Am. Chem. Soc. 2013; 135: 5877
    • 11j Ackermann L. Chem. Commun. 2010; 46: 4866
    • 11k Ackermann L, Novák P, Vicente R, Hofmann N. Angew. Chem. Int. Ed. 2009; 48: 6045
    • 12a Liang Y.-F, Steinbock R, Yang L, Ackermann L. Angew. Chem. Int. Ed. 2018; 57: 10625
    • 12b Gandeepan P, Mo J, Ackermann L. Chem. Commun. 2017; 53: 5906
    • 12c Yang F, Koeller J, Ackermann L. Angew. Chem. Int. Ed. 2016; 55: 4759
    • 13a Strieth-Kalthoff F, James MJ, Teders M, Pitzer L, Glorius F. Chem. Soc. Rev. 2018; 47: 7190
    • 13b Twilton J, Le C, Zhang P, Shaw MH, Evans RW, MacMillan DW. C. Nat. Rev. Chem. 2017; 1: 0052
    • 13c Matsui JK, Lang SB, Heitz DR, Molander GA. ACS Catal. 2017; 7: 2563
    • 13d Skubi KL, Blum TR, Yoon TP. Chem. Rev. 2016; 116: 10035
    • 13e Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
    • 13f Miller DC, Tarantino KT, Knowles RR. Top. Curr. Chem. 2016; 374: 30
    • 13g Kärkäs MD, Porco JA, Stephenson CR. J. Chem. Rev. 2016; 116: 9683
    • 13h Fagnoni M, Dondi D, Ravelli D, Albini A. Chem. Rev. 2007; 107: 2725
    • 14a Schwarz J, König B. Green Chem. 2018; 20: 323
    • 14b Kumar NY. P, Rogge T, Yetra SR, Bechtoldt A, Clot E, Ackermann L. Chem. Eur. J. 2017; 23: 17449
    • 14c Wei Y, Hu P, Zhang M, Su W. Chem. Rev. 2017; 117: 8864
    • 14d Kumar NY. P, Bechtoldt A, Raghuvanshi K, Ackermann L. Angew. Chem. Int. Ed. 2016; 55: 6929
    • 15a Wang J, Li G.-X, He G, Chen G. Asian J. Org. Chem. 2018; 7: 1307
    • 15b Sun AC, McClain EJ, Beatty JW, Stephenson CR. J. Org. Lett. 2018; 20: 3487
    • 15c Ren L, Cong H. Org. Lett. 2018; 20: 3225
    • 15d Proctor RS. J, Davis HJ, Phipps RJ. Science 2018; 360: 419
    • 15e McAtee RC, Beatty JW, McAtee CC, Stephenson CR. J. Org. Lett. 2018; 20: 3491
    • 15f Liu X, Liu Y, Chai G, Qiao B, Zhao X, Jiang Z. Org. Lett. 2018; 20: 6298
    • 15g Guo J, Wu Q.-L, Xie Y, Weng J, Lu G. J. Org. Chem. 2018; 83: 12559
    • 15h Genovino J, Lian Y, Zhang Y, Hope TO, Juneau A, Gagné Y, Ingle G, Frenette M. Org. Lett. 2018; 20: 3229
    • 15i Kammer LM, Rahman A, Opatz T. Molecules 2018; 23: 764
    • 15j Sakamoto R, Kashiwagi H, Maruoka K. Org. Lett. 2017; 19: 5126
    • 15k Jin Y, Fu H. Asian J. Org. Chem. 2017; 6: 368
    • 15l Garza-Sanchez RA, Tlahuext-Aca A, Tavakoli G, Glorius F. ACS Catal. 2017; 7: 4057
    • 15m Huang H, Jia K, Chen Y. ACS Catal. 2016; 6: 4983
    • 15n Xuan J, Zhang Z.-G, Xiao W.-J. Angew. Chem. Int. Ed. 2015; 54: 15632
    • 15o Cheng W.-M, Shang R, Fu Y. ACS Catal. 2016; 7: 907
    • 15p Lackner GL, Quasdorf KW, Overman LE. J. Am. Chem. Soc. 2013; 135: 15342
    • 16a Yi H, Niu L, Song C, Li Y, Dou B, Singh AK, Lei A. Angew. Chem. Int. Ed. 2017; 56: 1120
    • 16b Yang Q, Zhang L, Ye C, Luo S, Wu L.-Z, Tung C.-H. Angew. Chem. Int. Ed. 2017; 56: 3694
    • 16c Niu L, Yi H, Wang S, Liu T, Liu J, Lei A. Nat. Commun. 2017; 8: 14226
    • 16d He K.-H, Tan F.-F, Zhou C.-Z, Zhou G.-J, Yang X.-L, Li Y. Angew. Chem. Int. Ed. 2017; 56: 3080
    • 16e Zheng Y.-W, Chen B, Ye P, Feng K, Wang W, Meng Q.-Y, Wu L.-Z, Tung C.-H. J. Am. Chem. Soc. 2016; 138: 10080
    • 16f Xiang M, Meng Q.-Y, Li J.-X, Zheng Y.-W, Ye C, Li Z.-J, Chen B, Tung C.-H, Wu L.-Z. Chem. Eur. J. 2015; 21: 18080
  • 17 Yu M, Wang B, Zhou P, Jia X, Yuan Y. ChemistrySelect 2016; 1: 6217
  • 18 Yu D, Lu L, Shen Q. Org. Lett. 2013; 15: 940
  • 19 Bolaño T, Esteruelas MA, Fernández I, Oñate E, Palacios A, Tsai J.-Y, Xia C. Organometallics 2015; 34: 778
  • 20 Hou S, Yang H, Cheng B, Zhai H, Li Y. Chem. Commun. 2017; 53: 6926
  • 21 Galicia M, González FJ. J. Electrochem. Soc. 2002; 149: D46
  • 22 Fiorentino M, Testaferri L, Tiecco M, Troisi L. J. Chem. Soc., Perkin Trans. 2 1977; 1679
  • 23 McCallum T, Barriault L. Chem. Sci. 2016; 7: 4754

Zoom Image
Scheme 1 Visible-light-induced decarboxylative C–H adamantylation
Zoom Image
Figure 1 Photocatalysts (PCs) tested in this study
Zoom Image
Scheme 2 Visible-light-induced decarboxylative C–H adamantylation of azoles 1
Zoom Image
Scheme 3 Key mechanistic findings
Zoom Image
Figure 2 (a) The on/off light experiments. (b) Fluorescence quenching experiments of PC1* with 2. (c) Fluorescence quenching experiments of PC1* with 1a. (d) Fluorescence quenching experiments of PC1* with adamantane carboxylate.
Zoom Image
Scheme 4 Proposed mechanism for the decarboxylative C–H adamantylation