Synlett 2019; 30(02): 193-198
DOI: 10.1055/s-0037-1611695
letter
© Georg Thieme Verlag Stuttgart · New York

A Newly Designed Carbohydrate-Derived Alkylamine Promotes Ullmann Type C–N Coupling Catalyzed by Copper in Water

Guoquan Zhou
a   School of Material and Chemical Engineering, Ningbo University of Technology, Ningbo, P. R. of China
c   Department of Chemistry, Prairie View A&M University, Prairie View, USA   Email: hjfan@pvamu.edu
,
Wen Chen
b   School of Chemical and Material Engineering, Jiangnan University, Wuxi, P. R. of China   Email: gexin@jiangnan.edu.cn
,
Shihui Zhang
b   School of Chemical and Material Engineering, Jiangnan University, Wuxi, P. R. of China   Email: gexin@jiangnan.edu.cn
,
Xuemin Liu
b   School of Chemical and Material Engineering, Jiangnan University, Wuxi, P. R. of China   Email: gexin@jiangnan.edu.cn
,
Zehui Yang
a   School of Material and Chemical Engineering, Ningbo University of Technology, Ningbo, P. R. of China
,
Xin Ge*
b   School of Chemical and Material Engineering, Jiangnan University, Wuxi, P. R. of China   Email: gexin@jiangnan.edu.cn
,
Hua-Jun Fan*
c   Department of Chemistry, Prairie View A&M University, Prairie View, USA   Email: hjfan@pvamu.edu
› Author Affiliations
This research is sponsored by China National Key Research and invention program of the thirteenth Five-Year Plan (2017YFD0200707), the Natural Science Foundation of China (21606104), the Opening Foundation from Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology (ACEMT-17-03) and US Department of Energy, National Nuclear Security Administration grant (DE-NA 0001861 & DE-NA 0002630).
Further Information

Publication History

Received: 07 October 2018

Accepted after revision: 25 November 2018

Publication Date:
17 December 2018 (online)


Abstract

A green and biodegradable carbohydrate-derived alkylamine was designed and employed as ligand for Ullmann type C–N coupling catalyzed by copper in water. The coupling of aryl iodide and N-nucleophiles were examined and moderate to excellent yields were obtained. In addition, the in-water coupling strategy was expanded successfully to the reaction of indoles with 4-iodoanisole. By measuring the solubility, it is speculated that carbohydrate-derived alkylamine plays the role of chelating copper and promoting the dissolution of 4-iodoanisole in water. Remarkably, this methodology was environmentally friendly and economical because of the use of aqueous media in place of organic solvents.

Supporting Information

 
  • References and Notes

  • 1 Sano H, Noguchi T, Tanatani A. Bioorg. Med. Chem. 2005; 9: 3079
  • 2 Aragay G, Pino F, Merkoci A. Chem. Rev. 2012; 10: 5317
  • 3 Enders D, Niemeier O, Henseler A. Chem. Rev. 2007; 5606
    • 4a Monnier F, Taillefer M. Angew. Chem. Int. Ed. 2009; 38: 6954
    • 4b Sambiagio C, Marsden SP, Blackera AJ, McGowan PC. Chem. Soc. Rev. 2014; 10: 3525
    • 4c Bariwal J, Eycken EV. d. Chem. Soc. Rev. 2013; 24: 9283
    • 5a Surry DS, Buchwald SL. Chem. Sci. 2010; 1: 13
    • 5b Altman RA, Hyde AM, Huang X, Buchwald SL. J. Am. Chem. Soc. 2008; 29: 9613
    • 5c He N, Huo Y, Liu J, Huang Y, Zhang S, Cai Q. Org. Lett. 2015; 2: 374
    • 6a Ma D, Cai Q, Zhang H. Org. Lett. 2003; 14: 2453
    • 6b Yuan Q, Ma D. J. Org. Chem. 2008; 13: 5159
    • 6c Xu L, Jiang Y, Ma D. Org. Lett. 2012; 4: 1150
    • 7a Evindar G, Batey RA. Org. Lett. 2003; 2: 133
    • 7b Altman RA, Buchwald SL. Org. Lett. 2007; 4: 643
    • 7c Engel-Andreasen J, Shimpukade B, Ulven T. Green Chem. 2013; 2: 336
    • 8a Shafir A, Buchwald SL. J. Am. Chem. Soc. 2006; 27: 8742
    • 8b Chen F, Liu N, Ji E, Dai B. RSC Adv. 2015; 64: 51512
    • 8c Sharma KK, Mandloi M, Rai N, Jain R. RSC Adv. 2016; 96762
    • 9a Li X, Yang D, Jiang Y, Fu H. Green Chem. 2010; 44: 1097
    • 9b Wang D, Zhang F, Kuang D, Yu J, Li J. Green Chem. 2012; 5: 1268
    • 9c Henri-Jean C, Pascalp C, Jean-Francis S, Marc T. Chem. Eur. J. 2004; 22: 5607
    • 10a Jiang D, Fu H, Jiang Y, Zhao Y. J. Org. Chem. 2007; 2: 672
    • 10b Wang Y, Zhang Y, Yang B, Zhang A, Yao Q. Org. Biomol. Chem. 2015; 13: 4101
    • 10c Zhao X, She Y, Fang K, Li G. J. Org. Chem. 2016; 1024
    • 11a Goh SL. M, Hoegerl MP, Jokic NB, Tanase AD, Bechlars B, Baratta W, Mink J, Kuehn FE. Eur. J. Inorg. Chem. 2014; 1225
    • 11b Zhang Y, Feng MT, Lu JM. Org. Biomol. Chem. 2013; 14: 2266
    • 12a Tang YQ, Chu CY, Zhu L, Qian B, Shao LX. Tetrahedron 2011; 49: 9479
    • 12b Yuan D, Teng Q, Han VH. Organometallics 2014; 7: 1794
    • 13a Vidavsky Y, Anaby A, Lemcoff NG. Dalton Trans. 2012; 32
    • 13b Tomasek J, Schatz J. Green Chem. 2013; 9: 2317
    • 14a Li Z, Wu Z, Deng H, Zhou X. Chinese J. Org. Chem. 2013; 4: 760
    • 14b Duan W, Ma Y, Qu B, Zhao L, Chen J, Song C. Tetrahedron: Asymmetry 2012; 18-19: 1369
    • 14c Ma GN, Zhang T, Shi M. Org. Lett. 2009; 4: 875
  • 15 Jessop PG. Green Chem. 2011; 6: 1391
    • 16a Narayan S, Muldoon J, Finn MG, Fokin VV, Kolb HC, Sharpless KB. Angew. Chem. Int. Ed. 2005; 3275
    • 16b Butler RN, Coyne AG. Chem. Rev. 2010; 10: 6302
    • 17a Mukhopadhyay C, Tapaswi PK, Butcher RJ. Org. Biomol. Chem. 2010; 20: 4720
    • 17b Yong FF, Teo YC, Tay SH, Tan YH, Lim KH. Tetrahedron Lett. 2011; 11: 1161
    • 17c Krause N. Curr. Opin. Green .Sustainable Chem. 2017; 18
    • 18a Bollenbach M, Wagner P, Aquino PG. V, Bourguignon JJ, Bihel F, Salomé C, Schmitt M. ChemSusChem 2016; 22: 3244
    • 18b Lipshutz BH, Ghorai S, Abela AR, Moser R, Nishikata T, Duplais C, Krasovskiy A, Gaston RD, Gadwood RC. J. Org. Chem. 2011; 11: 4379
    • 18c Sorella GL, Strukul G, Scarso A. Green Chem. 2015; 2: 644
    • 19a Lu Z, Twieg RJ. Tetrahedron Lett. 2005; 34: 2997
    • 19b Barbero N, Carril M, Sanmartin R, Domínguez E. Tetrahedron 2008; 50: 7283
    • 19c Liang L, Li Z, Zhou X. Org. Lett. 2009; 15: 3294
    • 19d Peng J, Ye M, Zong C, Hu F, Feng L, Wang X, Wang Y, Chen C. J. Org. Chem. 2011; 16: 716
  • 20 Lipshutz BH, Aguinaldo GT, Ghorai S, Voigtritter K. Org. Lett. 2008; 7: 1325
  • 21 Lu GP, Cai C, Lipshutz BH. Green Chem. 2013; 1: 105
  • 22 Lu GP, Cai C. Adv. Synth. Catal. 2013; 7: 1271
  • 23 Liang L, Li ZK, Zhou XG. Org. Lett. 2009; 15: 3294
  • 24 Wang DP, Zhang FX, Kuang DZ, Yu JX, Li JH. Green Chem. 2012; 5: 1268
    • 25a Yang B, Mao ZX, Zhu XH, Wan YQ. Catal. Commun. 2015; 92
    • 25b Hajipour AR, Check M, Khorsandi Z. Appl. Organomet. Chem. 2017; 11
    • 26a Ge X, Qian C, Chen Y, Chen X. Tetrahedron: Asymmetry 2014; 8: 596
    • 26b Ge X, Qian C, Chen X. Tetrahedron: Asymmetry 2014; 22: 1450
    • 27a Ge X, Chen X, Qian C, Zhou S. RSC Adv. 2016; 64: 58898
    • 27b Ge X, Chen XZ, Qian C, Zhou SD. RSC Adv. 2016; 35: 29638
  • 28 Cheng D, Gan F, Qian W, Bao W. Green Chem. 2008; 25: 171
    • 29a Thakur KG, Ganapathy D, Sekar G. Chem. Commun. 2011; 5076
    • 29b Wen M, Shen C, Wang L, Zhang P, Jin J. RSC Adv. 2015; 2: 1522
  • 30 Cheng DP, Gan FF, Qian WX, Bao WL. Green Chem. 2008; 2: 171
  • 31 Genady AR. Org. Chem.: Indian J. 2006; 2: 21
    • 32a Wang Y, Jia Y, Qian C, Tao M, Lv X, Chen X. J. Chem. Eng. Data 2013; 3: 660
    • 32b Su J, Chao Q, Luo N, Xiang X, Xu Y, Chen X. J. Chem. Eng. Data 2014; 11: 3894
  • 33 Preparation of N,N′-Di-β-d-glucopyansoyl Ethylenediamine L5 A mixture of glucose (3.6 g, 20 mmol), ethylenediamine (0.6 g, 10 mmol) and acetic acid (0.1 g, 1.67 mmol) in CH3OH was heated at reflux at 30 °C. After 8 h the solvent was removed under vacuum. The pure product L5 was recrystallized in ethanol as a white solid. Mp 125.3–126.1 °C. [α]D 20 = –29.6 (c 1.00, H2O). 1H NMR (600 MHz, D2O): δ = 3.92 (d, J = 8.0 Hz, 2 H), 3.80 (d, J = 11.8 Hz, 2 H), 3.69–3.55 (m, 2 H), 3.37 (d, J = 8.0 Hz, 2 H), 3.33–3.20 (m, 4 H), 3.11 (t, J = 8.2 Hz, 2 H), 2.89 (d, J = 6.4 Hz, 2 H), 2.74 (d, J = 6.8 Hz, 2 H). 13C NMR (150 MHz, D2O): δ = 89.73, 76.77, 76.68, 72.94, 69.84, 60.86, 44.89. 1 J[13CH(1)]=151.5. IR (KBr): 3290 and 3230 [ν(O-H)], 2877 [ν(C-H)], 1469 and 1361 [δ(C-H)], 1268 [ν(C-O-C)], 1076 and 1014 [ν(C-N)], 811 [δ(N-H)]. MS (EI): m/z = 384 [M]+.
  • 34 CuI/L5 Catalyzed Ullmann Type C–N Coupling of Aryl Halides and Nitrogen Nucleophiles in Water; General Procedure To a stirred solution of H2O (5 mL) were added CuI (0.1 mmol, 19 mg), aryl halide (1.0 mmol), nitrogen nucleophile (1.2 mmol), Cs2CO3 (2 mmol, 651 mg) and L5 (0.1 mmol), and the mixture was heated to 100 °C under air and stirred for 24 h. When the reaction was complete, the mixture was cooled and partitioned by adding ethyl acetate (20 mL) and water (20 mL). The organic phase was separated and the aqueous phase was extracted with ethyl acetate (2 × 20 mL). The combined organic phases were washed with saturated brine, dried over Na2SO4, and concentrated in vacuo. The crude product was purified by column chromatography through silica gel, eluting with ethyl acetate/petroleum ether solvent mixture, to give the pure product. Data for 1-(4-Methoxyphenyl)-1H-imidazole 3a as Typical Example Pale-yellow solid; mp 60–61 °C. 1H NMR (400 MHz, CDCl3): δ = 7.79 (s, 1 H), 7.30 (d, J = 8.8 Hz, 2 H), 7.20 (d, J = 6.6 Hz, 2 H), 6.99 (d, J = 12.0 Hz, 2 H), 3.85 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 159.0, 135.8, 130.7, 129.9, 123.3, 118.8, 114.9, 55.6. MS (EI): m/z = 174 [M]+ .