Synlett 2019; 30(10): 1237-1240
DOI: 10.1055/s-0037-1611829
letter
© Georg Thieme Verlag Stuttgart · New York

Intramolecular Aldol Ring Closures of Cysteine Derivatives Leading to Densely Functionalised Pyroglutamates

Hadia Almahli
,
Niamh C. Jimenez
,
Mark G. Moloney*
The Department of Chemistry, Chemistry Research Laboratory, The University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK   Email: mark.moloney@chem.ox.ac.uk
› Author Affiliations
A.H. gratefully acknowledges the award of a Council for At-Risk Academics (CARA) Fellowship and Christ Church College, University of Oxford, and N.J. acknowledges funding from EPSRC SBM CDT.
Further Information

Publication History

Received: 08 March 2019

Accepted after revision: 26 April 2019

Publication Date:
13 May 2019 (online)


Abstract

The synthesis of densely functionalised pyroglutamates derived from cysteine by an aldol cyclisation strategy has been achieved.

Supporting Information

 
  • References

  • 1 Panduwawala TD, Iqbal S, Tirfoin R, Moloney MG. Org. Biomol. Chem. 2016; 14: 4464
    • 2a Anwar M, Moloney MG. Chem. Biol. Drug Des. 2013; 81: 645
    • 2b Anwar M, Cowley AR, Moloney MG. Tetrahedron: Asymmetry 2010; 21: 1758
    • 2c Anwar M, Moloney MG. Tetrahedron Lett. 2007; 48: 7259
  • 3 Andrews MD, Brewster AG, Crapnell KM, Ibbett AJ, Jones T, Moloney MG, Prout K, Watkin D. J. Chem. Soc., Perkin Trans. 1 1998; 223
  • 4 Andrews MD, Brewster AG, Moloney MG. Synlett 1996; 612
  • 5 Angelov P, Chau YK. S, Fryer PJ, Moloney MG, Thompson AL, Trippier PC. Org. Biomol. Chem. 2012; 10: 3472
  • 6 Heaviside EA, Moloney MG, Thompson AL. RSC Adv. 2014; 4: 16233
  • 7 Andrews MD, Brewster AG, Moloney MG. J. Chem. Soc., Perkin Trans. 1 2002; 80
  • 8 Ishihara J, Hatakeyama S. Chem. Rec. 2014; 14: 663
  • 9 Moloney MG, Trippier PC, Yaqoob M, Wang Z. Curr. Drug Discovery Technol. 2004; 1: 181
    • 10a Satoh N, Yokoshima S, Fukuyama T. Org. Lett. 2011; 13: 3028
    • 10b Nguyen H, Ma G, Gladysheva T, Fremgen T, Romo D. J. Org. Chem. 2011; 76: 2
    • 10c Nguyen H, Maz G, Romo D. Chem. Commun. 2010; 46: 4803
  • 11 Ma G, Nguyen H, Romo D. Org. Lett. 2007; 9: 2143
  • 12 Moloney MG, Yaqoob M. Tetrahedron Lett. 2008; 49: 6202
  • 13 Method for aldol cyclisation: To a solution of N-acylated thiazolidine (1.0 equiv) in methanol was added sodium methoxide (1.05 equiv) and the resulting mixture was stirred at r.t. for 15–24 h. Subsequently, the mixture was partitioned between Et2O and 1 M HCl. The Et2O layer was washed with brine, dried (MgSO4), filtered and concentrated in vacuo to furnish the crude pyroglutamates. Methyl (3R,7R,7aR) and (3R,7S,7aR)-3-(tert-butyl)-7-hydroxy-7-methyl-5-oxodihydro-1H,3H-pyrrolo[1,2-c]thiazole-7a(5H)-carboxylate (7a and 8a). Yellow oil. IR: 2958, 1739, 1688, 1616, 1366, 1260, 1108, 1022 cm–1. 1H NMR (500 MHz, CDCl3): δ (major) = 5.11 (s, 1 H, H-3), 3.80 (s, 3 H, CO2Me), 3.62 (d, J = 12.1 Hz, 1 H, H-1), 3.55 (d, J = 12.1 Hz, 1 H, H-1), 3.04 (d, J = 16.3 Hz, 1 H, H-6), 2.45 (d, J = 16.3 Hz, 1 H, H-6), 1.27 (s, 3 H, H-9), 0.93 (s, 9 H, t-Bu); δ (minor) = 5.07 (s, 1 H, H-3), 3.82 (s, 3 H, CO2Me), 3.69 (d, J = 12.9 Hz, 1 H, H-1), 3.27 (d, J = 12.9 Hz, 1 H, H-1), 3.23 (d, J = 15.7 Hz, 1 H, H-6), 2.42 (d, J = 15.6 Hz, 1 H, H-6), 1.51 (s, 3 H, H-9), 0.93 (s, 9 H, t-Bu). 13C NMR (500 MHz, CDCl3): δ (major) = 175.3 (C-5), 172.0 (CO2Me), 85.0 (C-7a), 79.6 (C-7), 73.1 (C-3), 53.1 (CO2Me), 47.2 (C-6), 38.3 (C-10), 33.4 (C-1), 26.4 (t-Bu), 21.8 (C-9); δ (minor) = 173.6 (C-5), 172.4 (CO2Me), 84.2 (C-7a), 78.7 (C-7), 72.2 (C-3), 53.0 (CO2Me), 46.7 (C-6), 38.3 (C-10), 33.8 (C-1), 26.4 (t-Bu), 24.04 (C-9). HRMS (ESI+): m/z [M + H+] calcd for C13H22NO4S+: 288.12641; found 288.12650. Methyl (3R,7S,7aR)-3-(tert-butyl)-7-hydroxy-6-methyl-5-oxo-7-((phenylthio)methyl)-hexahydropyrrolo[1,2-c]thiazole-7a(5H)-carboxylate (11b). Yield: 0.19 g (76%); yellow oil; [α] d 23 –19.8 (c 1.0 in CHCl3). IR: 3358, 2930, 2854, 1713, 1583 cm–1. 1H (500 MHz, CDCl3): δ = 7.19–7.23 (m, 5 H, ArH), 5.11 (s, 1 H, C(3)H), 3.79 (s, 3 H, OCH3), 3.75 (d, J = 16.2 Hz, 1 H, C(1)HAHB), 3.65 (d, J = 16.2 Hz, 1 H, C(1)HAHB), 3.22 (d, J = 16.2 Hz, 1 H, CHAHB), 3.10 (q, J = 7.2 Hz, 1 H, C(6)H), 3.07 (d, J = 16.2 Hz, 1 H, CHAHB), 1.07 (d, 3 H, CH3), 0.93 (s, 9 H, t-Bu). 13C (126 MHz, CDCl3): δ = 176.7 (C(O)), 172.1 (CO2Me), 126.8–129.4 (C(Ar)), 83.50 (C(7a)), 83.31 (C(3)), 72.85 (C(7)), 53.43 (OMe), 51.46 (OMe), 46.49 (C(6)), 41.11 (CH2), 38.40 (C(3)), 34.32 (C(CH3)3), 26.64 (C(CH3)3), 14.41 (CH3). HRMS (ESI): m/z [M+] calcd for C20H28NO4S2: 410.14543; found: 410.14539.
  • 14 Wang Y, Huang G, Hu S, Jin K, Wu Y, Chen F. Tetrahedron 2017; 73 (34) 5055
  • 15 Jeong Y.-C, Moloney MG. Synlett 2009; 2487
  • 16 Eto K, Yoshino M, Takahashi K, Ishihara J, Hatakeyama S. Org. Lett. 2011; 13 (19) 5398