Synlett 2019; 30(19): 2136-2142
DOI: 10.1055/s-0039-1690719
letter
© Georg Thieme Verlag Stuttgart · New York

Copper Aluminate Spinel in Click Chemistry: An Efficient Heterogeneous Nanocatalyst for the Highly Regioselective Synthesis of Triazoles in Water

Dariush Khalili
,
Leila Kavoosi
,
Ali Khalafi-Nezhad
Financial support from the Shiraz University research council is gratefully acknowledged.
Further Information

Publication History

Received: 01 October 2019

Accepted after revision: 03 October 2019

Publication Date:
04 November 2019 (online)


Abstract

An expeditious protocol for the one-pot synthesis of 1,4-disubstituted (β-hydroxy)-1,2,3-triazoles in an aqueous medium has been developed using copper aluminate nanoparticles. This heterogeneous catalytic system was found to drive a multicomponent click reaction between organic azides (generated in situ from epoxides or halides) and terminal aliphatic or aromatic alkynes in up to 96% yield without the need for a reducing agent. Structurally diverse 1,2,3-triazoles were synthesized in good to excellent yields, and the catalyst could be easily separated by simple filtration, recycled, and reused in six subsequent cycles.

Supporting Information

 
  • References and Notes

  • 1 Singh MS, Chowdhury S, Koley S. Tetrahedron 2016; 72: 5257
  • 2 Hein JE, Fokin VV. Chem. Soc. Rev. 2010; 39: 1302
  • 3 Meldal M, Tornøe CW. Chem. Rev. 2008; 108: 2952
    • 4a Singh A, Zhang D, Tam CC, Cheng LW, Land KM, Kumar V. J. Organomet. Chem. 2019; 896: 1
    • 4b Dharavath R, Boda S. Synth. Commun. 2019; 49: 1741
    • 4c Zhang J, Wang S, Ba Y, Xu Z. Eur. J. Med. Chem. 2019; 174: 1
    • 4d Aouad MR, Almehmadi MA, Rezki N, Al-blewi FF, Messali M, Ali I. J. Mol. Struct. 2019; 1188: 153
    • 4e Mahanti S, Sunkara S, Bhavani R. Synth. Commun. 2019; 49: 1729
    • 4f Chavan PV, Desai UV, Wadgaonkar PP, Tapase SR, Kodam KM, Choudhari A, Sarkar D. Bioorg. Chem. 2019; 85: 475
    • 4g Aoun S, Sierocki P, Lebreton J, Mathé-Allainmat M. Synthesis 2019; 51: 3556 (5)
    • 5a Haldón E, Nicasio MC, Pérez PJ. Org. Biomol. Chem. 2015; 13: 9528
    • 5b Kumar SV, Lo WK. C, Brooks HJ. L, Crowley JD. Inorg. Chim. Acta 2015; 425: 1
    • 5c Nair DP, Podgórski M, Chatani S, Gong T, Xi W, Fenoli CR, Bowman CN. Chem. Mater. 2014; 26: 724
    • 5d Speers AE, Adam GC, Cravatt BF. J. Am. Chem. Soc. 2003; 125: 4686
    • 5e Golas PL, Tsarevsky NV, Sumerlin BS, Matyjaszewski K. Macromolecules 2006; 39: 6451
  • 6 Jin T, Yan M, Yamamoto Y. ChemCatChem 2012; 4: 1217
  • 7 Castro V, Rodríguez H, Albericio F. ACS Comb. Sci. 2016; 18: 1
  • 8 Rostovtsev VV, Green LG, Fokin VV, Sharpless KB. Angew. Chem. 2002; 114: 2708
  • 9 Zhang L, Chen X, Xue P, Sun HH. Y, Williams ID, Sharpless KB, Fokin VV, Jia G. J. Am. Chem. Soc. 2005; 127: 15998
  • 10 Mandoli A. Molecules 2016; 21: 1174
  • 11 Chassaing S, Bénéteau V, Pale P. Catal. Sci. Technol. 2016; 6: 923
    • 12a Agalave SG, Pharande SG, Gade SM, Pore VS. Asian J. Org. Chem. 2015; 4: 943
    • 12b Chavan PV, Charate SP, Desai UV, Rode CV, Wadgaonkar PP. ChemistrySelect 2019; 4: 7144
    • 12c Ebadi A, Rajabzadeh M, Khalifeh R. ChemistrySelect 2019; 4: 7211
    • 12d Bahsis L, Ben El Ayouchia H, Anane H, Pascual-Alvarez A, De Munno G, Julve M, Stiriba SE. Appl. Organomet. Chem. 2019; 33: e4669
    • 12e Xia J, Huang X, Cai M. Synthesis 2019; 51: 2014
    • 12f Siuki MM. K, Bakavoli M, Eshghi H. Appl. Organomet. Chem. 2019; 33: e4774
    • 12g Aflak N, Ben El Ayouchia H, Bahsis L, El Mouchtari E, Julve M, Rafqah S, Anane H, Stiriba SE. Front. Chem. (Lausanne, Switz.) 2019; 7: 81
    • 12h Souza JF, Costa GP, Luque R, Alves D, Fajardo AR. Catal. Sci. Technol. 2019; 9: 136
    • 12i Dervaux B, Du Prez FE. Chem. Sci. 2012; 3: 959
    • 12j Wang J, Yang J, Fu X, Qin G, Xiao T, Jiang Y. Synlett 2019; 30: 1452
    • 13a Lv W, Luo Z, Yang H, Liu B, Weng W, Liu J. Ultrason. Sonochem. 2010; 17: 344
    • 13b Dhak D, Pramanik P. J. Am. Ceram. Soc. 2006; 89: 1014
    • 13c Xu Y, Lin ZY, Zheng YY, Dacquin J.-P, Royer S, Zhang H. Sci. Total Environ. 2019; 651: 2585
    • 13d Zhang J, Shao C, Li X, Xin J, Tao R, Liu Y. ACS Sustainable Chem. Eng. 2018; 6: 10714
    • 13e Chaudhary RG, Sonkusare VN, Bhusari GS, Mondal A, PMD Shaik D, Juneja HD. Res. Chem. Intermed. 2018; 44: 2039
    • 13f Mindru I, Gingasu D, Patron L, Marinescu G, Calderon-Moreno JM, Preda S, Oprea O, Nita S. Ceram. Int. 2016; 42: 154
  • 14 Balijapalli U, Iyer SK. Dyes Pigm. 2015; 121: 88
  • 15 Ragupathi C, Vijaya JJ, Kennedy LJ, Bououdina M. Mater. Sci. Semicond. Process. 2014; 24: 146
    • 16a Moaddeli A, Rousta M, Shekouhy M, Khalili D, Samadi M, Khalafi-Nezhad A. Asian J. Org. Chem. 2019; 8: 356
    • 16b Khalili D, Etemadi-Davan E, Banazadeh AR. Appl. Organomet. Chem. 2018; 32: e3971
    • 16c Khalili D, Banazadeh AR, Etemadi-Davan E. Catal. Lett. 2017; 147: 2674
    • 16d Khalili D, Rezaei M, Koohgard M. Microporous Mesoporous Mater. 2019; 287: 254
  • 17 Salavati-Niasari M, Davar F, Farhadi M. J. Sol-Gel Sci. Technol. 2009; 51: 48
  • 18 Kumar RT, Suresh P, Selvam NC. S, Kennedy LJ, Vijaya JJ. J. Alloys Compd. 2012; 522: 39
  • 19 Chassaing S, Sido AS. S, Alix A, Kumarraja M, Pale P, Sommer J. Chem. Eur. J. 2008; 14: 6713
  • 20 1,2,3-Triazoles; General ProcedureIn a 10 mL round-bottomed flask, the alkyl halide or epoxide (1 mmol), terminal alkyne (1.1 mmol), and NaN3 (1.2 mmol) were mixed and stirred in H2O (3 mL) in the presence of the CuAl2O4 catalyst (0.005g) at 90 °C. When the reaction was complete (TLC; hexane–EtOAc), the catalyst was collected by simple filtration. The filtrate was diluted with H2O (5 mL) and extracted with EtOAc (3 × 10 mL). The combined organic phases were washed with brine, dried (Na2SO4), and concentrated under reduced pressure. The resulting residue was purified by column chromatography (silica gel, hexane–EtOAc).4-({4-[(4-Benzylphenoxy)methyl]-1H-1,2,3-triazol-1-yl}methyl)benzonitrile (3l)Yellow solid; yield: 372 mg (89%); mp 63–65 °C. IR (KBr): 3031, 2923, 2360, 2240, 1612, 1512, 1458, 1334, 1234, 1110, 1002, 833, 725 cm–1. 1H NMR (250 MHz, CDCl3): δ = 4.93 (s, 2 H), 5.58 (s, 2 H), 5.68 (s, 2 H), 6.69 (dd, J = 7.5, 2.5 Hz, 2 H), 6.88 (dd, J = 10.1, 5.4 Hz, 2 H), 7.27–7.34 (m, 5 H), 7.57 (dd, J = 7.5, 2.5 Hz, 2 H), 7.64 (dd, J = 7.5, 2.5 Hz, 2 H), 7.75 (s, 1 H). 13C NMR (101 MHz, CDCl3): δ = 41.09, 53.37, 58.25, 112.31, 114.80, 123.16, 126.13, 128.20, 128.86, 130.00, 130.16, 132.87, 134.13, 135.04, 139.87, 141.46, 145.08, 156.55.4-[(4-Benzylphenoxy)methyl]-1-(3-fluorobenzyl)-1H-1,2,3-triazole (3m)Yellow solid; yield: 369 mg (90%); mp 59–61 °C. IR (KBr): 3070, 2916, 2353, 1697, 1512, 1450, 1250, 1049, 732, 694, 594 cm–1. 1H NMR (250 MHz, CDCl3): δ = 3.82 (s, 2 H), 5.07 (s, 2 H), 5.40 (s, 2 H), 6.65 (dd, J = 5.3, 2.5 Hz, 1 H), 6.84–6.95 (m, 3 H), 6.97–7.02 (m, 3 H), 7.06–7.11 (m, 4 H), 7.14–7.17 (m, 2 H), 7.45 (s, 1 H). 13C NMR (101 MHz, CDCl3): δ = 41.14, 53.32, 62.00, 114.71–115.80 (m, 2 C), 126.18, 128.61, 128.97, 130.08, 130.90, 134.07, 137.33, 141.61, 144.68, 156.76, 161.73–164.19 (d, J = 248.5 Hz, 1 C).2-{4-[(4-Benzylphenoxy)methyl]-1H-1,2,3-triazol-1-yl}-1-phenylethanol (5g)White solid; yield: 351 mg (83%); mp 64–66 °C. IR (KBr): 3309, 3062, 2916, 2360, 2245, 2098, 1951, 1890, 1604, 1504, 1450, 1342, 1242, 1049, 910, 840 cm–1. 1H NMR (250 MHz, CDCl3): δ = 3.89–3.93 (m, 2 H), 4.10–4.22 (m, 1 H), 4.49–4.64 (m, 1 H), 5.13–5.15 (m, 2 H), 5.57–5.65 (m, 1 H), 6.84–6.90 (m, 2 H), 7.16–7.35 (m, 12 H), 7.53–7.56 (m, 1 H). 13C NMR (101 MHz, CDCl3): δ = 41.11, 61.99, 64.77, 67.30, 114.83, 123.76, 126.12, 127.25, 128.54, 128.90, 128.96, 129.14, 130.02, 134.04, 136.08, 141.50, 144.05, 156.66.
  • 21 Mohammed S, Padala AK, Dar BA, Singh B, Sreedhar B, Vishwakarma RA, Bharate SB. Tetrahedron 2012; 68: 8156
  • 22 Kuang G.-C, Michaels HA, Simmons JT, Clark RJ, Zhu L. J. Org. Chem. 2010; 75: 6540
  • 23 Li J, Ren Y, Ji F, Lai B. Chem. Eng. J. (Amsterdam, Neth.) 2017; 324: 63
  • 24 Rostovtsev VV, Green LG, Fokin VV, Sharpless KB. Angew. Chem. Int. Ed. 2002; 41: 2596