Synthesis 2020; 52(09): 1369-1378
DOI: 10.1055/s-0039-1690838
feature
© Georg Thieme Verlag Stuttgart · New York

Controlled Reduction of Nitriles by Sodium Hydride and Zinc Chloride

Derek Yiren Ong
,
Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore   Email: Shunsuke@ntu.edu.sg
› Author Affiliations
This work was supported by funding from Nanyang Technological University (NTU) and the Ministry of Education - Singapore (Academic Research Fund Tier 1: RG10/17).
Further Information

Publication History

Received: 23 December 2019

Accepted: 04 February 2020

Publication Date:
19 February 2020 (online)


Abstract

A new protocol for the controlled reduction of nitriles to aldehydes was developed using a combination of sodium hydride and zinc chloride. The iminyl zinc intermediates derived from aromatic nitriles could be further functionalized with allylmetal nucleophiles to afford homoallylamines. As the method allows the reduction of various aliphatic and aromatic nitriles with a concise procedure under milder reaction conditions and exhibits wide functional group compatibility, it is well suited for use in various opportunities in chemical synthesis.

Supporting Information

 
  • References

  • 1 Galatsis P, Sollogoub M, Sinaÿ P. Diisobutylaluminum Hydride . In e-EROS Encyclopedia of Reagents for Organic Synthesis [Online]. Wiley & Sons; 2008. Posted September 15; DOI: org/10.1002/047084289X.rd245.pub2
  • 2 For use of DIBAL in continuous flow, see: Muñoz J. deM, Alcázar J, de la Hoz A, Díaz-Ortiz A. Tetrahedron Lett. 2011; 52: 6058
  • 3 For lithium triethoxyaluminum hydride [LiAl(OEt)3H], see: Brown HC, Shoaf CJ. J. Am. Chem. Soc. 1964; 86: 1079

    • For lithium or sodium tris(dialkylamino)aluminum hydrides [M(R2N)3AlH; M = Li or Na], see:
    • 4a Cha JS, Jeoung MK, Kim JM, Kwon OO, Lee JC. Org. Prep. Proced. Int. 1994; 26: 583
    • 4b Cha JS, Lse SE, Lee HS. Org. Prep. Proced. Int. 1992; 24: 331
  • 5 For catecholalane, see: Cha JS, Chang SW, Kwon OO, Kim JM. Synlett 1996; 165

    • For lithium diisobutylmorpholinoaluminum hydride and its derivatives, see:
    • 6a Kim YR, An DK. Bull. Korean Chem. Soc. 2012; 33: 4194
    • 6b Choi Y.-M, Yoo M, An DK. Bull. Korean Chem. Soc. 2010; 31: 473
    • 6c Choi Y.-M, Choi S.-J, Eom K.-Y, Hwang H, An DK. Bull. Korean Chem. Soc. 2008; 29: 2303
    • 6d Ha J.-H, Ahn J.-H, An DK. Bull. Korean Chem. Soc. 2006; 27: 121
    • 7a Cha JS, Yoon MS. Tetrahedron Lett. 1989; 30: 3677
    • 7b Cha JS, Kim JE, Oh SY. Bull. Korean Chem. Soc. 1987; 8: 313
    • 7c Cha JS, Oh SY, Kim JE. Bull. Korean Chem. Soc. 1987; 8: 301
    • 8a Laval S, Dayoub W, Pehlivan L, Métay E, Delbrayelle D, Mignani G, Lemaire M. Tetrahedron Lett. 2014; 55: 23
    • 8b Gutsulyak DV, Nikonov GI. Angew. Chem. Int. Ed. 2010; 49: 7553
    • 8c Khalimon AY, Simionescu R, Kuzmina LG, Howard JA. K, Nikonov GI. Angew. Chem. Int. Ed. 2008; 47: 7701
    • 8d Calas R. Pure Appl. Chem. 1966; 13: 61 ; and references therein
  • 9 Ong DY, Pang JH, Chiba S. J. Synth. Org. Chem., Jpn. 2019; 77: 1060
    • 10a Ong DY, Watanabe K, Takita R, Chiba S. Helv. Chim. Acta 2019; 102: e1900166
    • 10b Chan GH, Ong DY, Yen Z, Shunsuke C. Helv. Chim. Acta 2018; 101: e1800049
    • 10c Chan GH, Ong DY, Chiba S. Org. Synth. 2018; 95: 240
    • 10d Tejo C, Pang JH, Ong DY, Oi M, Uchiyama M, Takita R, Chiba S. Chem. Commun. 2018; 54: 1782
    • 10e Huang Y, Chan GH, Chiba S. Angew. Chem. Int. Ed. 2017; 56: 6544
    • 10f Ong DY, Tejo C, Xu K, Hirao H, Chiba S. Angew. Chem. Int. Ed. 2017; 56: 1840
    • 10g Too PC, Chan GH, Tnay YL, Hirao H, Chiba S. Angew. Chem. Int. Ed. 2016; 55: 3719
  • 11 Ong DY, Yen Z, Yoshii A, Revillo Imbernon J, Takita R, Chiba S. Angew. Chem. Int. Ed. 2019; 58: 4992
  • 12 For reviews, see: Uhl W. Coord. Chem. Rev. 2008; 252: 1540
  • 13 Sharma GV. M, Ilangovan A, Sreenivas P, Mahalingam AK. Synlett 2000; 0615
  • 14 Seiichi T, Masashi A, Seiji S, Kunio O. Chem. Lett. 1983; 12: 1593
  • 15 The reaction at –78 °C also gave branched homoallylamine 6b as a sole product.
    • 16a Roush WR, Ando K, Powers DB, Palkowitz AD, Halterman RL. J. Am. Chem. Soc. 1990; 112: 6339
    • 16b Hoffmann RW. Angew. Chem. Int. Ed. 1982; 21: 555
    • 16c Schlosser M, Hartmann J. J. Am. Chem. Soc. 1976; 98: 4674
    • 16d Kleinman EF, Volkmann RA. In Comprehensive Organic Synthesis, Vol. 2. Trost BM, Fleming I. Pergamon; Oxford: 1991: 975
  • 17 We prepared crotylpotassium from (E)-butene by the reported protocol and used them for the reaction with iminyl zinc intermediate derived from 3b at –78 °C. Both of the reactions gave branched homoallylamine 7b with syn-diastereoselectivity in almost the same ratio.
  • 18 Jenkner H. US 3116112A, 1963
  • 19 Martín R, Buchwald SL. Org. Lett. 2008; 10: 4561
  • 20 Gutiérrez-Bonet Á, Flores-Gaspar A, Martin R. J. Am. Chem. Soc. 2013; 135: 12576
  • 21 Wu Y.-J, He H, Bertekap R, Westphal R, Lelas S, Newton A, Wallace T, Taber M, Davis C, Macor JE, Bronson J. Bioorg. Med. Chem. 2013; 21: 2217
  • 22 Jarboe SG, Beak P. Org. Lett. 2000; 2: 357
  • 23 Pelletier G, Bechara WS, Charette AB. J. Am. Chem. Soc. 2010; 132: 12817
  • 24 Nishimura T, Onoue T, Ohe K, Uemura S. J. Org. Chem. 1999; 64: 6750
  • 25 Vyas DJ, Larionov E, Besnard C, Guénée L, Mazet C. J. Am. Chem. Soc. 2013; 135: 6177
  • 26 Zhu D, Lv L, Li C.-C, Ung S, Gao J, Li C.-J. Angew. Chem. Int. Ed. 2018; 57: 16520
  • 27 Shen Z.-L, Sommer K, Knochel P. Synthesis 2015; 47: 2617
  • 28 Ouach A, Gmouh S, Pucheault M, Vaultier M. Tetrahedron 2008; 64: 1962
  • 29 Le Sann C, Baron A, Mann J, van den Berg H, Gunaratnam M, Neidle S. Org. Biomol. Chem. 2006; 4: 1305
  • 30 Zhu C, Yukimura N, Yamane M. Organometallics 2010; 29: 2098
  • 31 Hansmann MM, López-Andarias A, Rettenmeier E, Egler-Lucas C, Rominger F, Hashmi AS. K, Romero-Nieto C. Angew. Chem. Int. Ed. 2016; 55: 1196
  • 32 Tripathi S, Singh SN, Yadav LD. S. RSC Adv. 2016; 6: 14547
  • 33 Pramanik S, Reddy RR, Ghorai P. J. Org. Chem. 2015; 80: 3656
  • 34 Sugiura M, Hirano K, Kobayashi S. J. Am. Chem. Soc. 2004; 126: 7182
  • 35 Ramachandran PV, Mitsuhashi W, Biswas D, Nicponski DR. Tetrahedron Lett. 2013; 54: 4830