Synlett 2020; 31(12): 1140-1146
DOI: 10.1055/s-0039-1690873
account
© Georg Thieme Verlag Stuttgart · New York

Activation Strategies for Earth-Abundant Metal Catalysis

Jingying Peng
,
S.P.T. acknowledges the Royal Society for a University Research Fellowship and a Research Grant. JP and SPT thank the University of Edinburgh and China Scholarship Council for a joint scholarship.
Further Information

Publication History

Received: 04 February 2020

Accepted after revision: 10 March 2020

Publication Date:
06 April 2020 (online)


Abstract

The use of earth-abundant metal-catalysed organic transformations has increased significantly in recent years. Where low-oxidation-state catalysts are required, the in situ activation of metal(II/III) salts offers an operationally simple method to access these catalysts. Here we present the development of activation strategies from the use of reducing organometallic reagents to endogenous activation. Applications in alkene and alkyne hydrofunctionalisation reactions will be used to highlight the synthetic applications of the activation methods discussed.

1 Introduction

2 In situ Activation Using Organometallic Reagents

3 In situ Activation Using Nonorganometallic Reagents

4 ‘Activator-Free’ Systems

5 Conclusions

 
  • References

    • 1a de Meijere A, Diederich F. Metal-Catalyzed Cross-Coupling Reactions. Wiley-VCH; Weinheim: 2004
    • 1b Negishi E, Anastasia L. Chem. Rev. 2003; 103: 1979
    • 1c Crabtree RH. Organometallic Chemistry of the Transition Metals, 4th ed. 2005;
    • 1d Allardyce CS, Dorcier A, Scolaro C, Dyson PJ. Appl. Organomet. Chem. 2005; 19: 1
    • 2a Buruiana DL, Lefter D, Tiron GL, Balta S, Bordei M. Ecology, Economics, Education and Legislation 2015; 565
    • 2b Wu XY, Cobbina SJ, Mao GH, Xu H, Zhang Z, Yang LQ. Environ. Sci. Pollut. Res. Int. 2016; 23: 8244
  • 3 British Geological Survey, Risk List 2015, (www.bgs.ac.uk/mineralsuk/statistics/criticalRawMaterials.html) Accessed 13/2/2020.
  • 4 Thormann L, Buchspies B, Mbohwa C, Kaltschmitt M. Minerals 2017; 7: 224
  • 5 Garrett CE, Prasad K. Adv. Synth. Catal. 2004; 346: 889
    • 6a Zuo ZQ, Wen HN, Liu GX, Huang Z. Synlett 2018; 29: 1421
    • 6b Sun J, Deng L. ACS Catal. 2016; 6: 290
    • 6c Chirik PJ. Acc. Chem. Res. 2015; 48: 1687
    • 6d Greenhalgh MD, Jones AS, Thomas SP. ChemCatChem 2015; 7: 190
    • 6e Carney JR, Dillon BR, Thomas SP. Eur. J. Org. Chem. 2016; 3912
    • 6f Le Bailly BA. F, Thomas SP. RSC Adv. 2011; 1: 1435
    • 7a Britovsek GJ. P, Gibson VC, Kimberley BS, Maddox PJ, McTavish SJ, Solan GA, White AJ. P, Williams DJ. Chem. Commun. 1998; 849
    • 7b Small BL, Brookhart M, Bennett AM. A. J. Am. Chem. Soc. 1998; 120: 4049
    • 8a Archer AM, Bouwkamp MW, Cortez MP, Lobkovsky E, Chirik PJ. Organometallics 2006; 25: 4269
    • 8b Russell SK, Milsmann C, Lobkovsky E, Weyhermuller T, Chirik PJ. Inorg. Chem. 2011; 50: 3159
    • 8c Darmon JM, Turner ZR, Lobkovsky E, Chirik PJ. Organometallics 2012; 31: 2275
    • 9a Stieber SC. E, Milsmann C, Hoyt JM, Turner ZR, Finkelstein KD, Wieghardt K, DeBeer S, Chirik PJ. Inorg. Chem. 2012; 51: 3770
    • 9b Russell SK, Darmon JM, Lobkovsky EP. J. Inorg. Chem. 2010; 49: 2782
    • 10a Wu JY, Moreau B, Ritter T. J. Am. Chem. Soc. 2009; 131: 12915
    • 10b Moreau B, Wu JY, Ritter T. Org. Lett. 2009; 11: 337
    • 10c Bart SC, Lobkovsky E, Chirik PJ. J. Am. Chem. Soc. 2004; 126: 13794
    • 10d Diao T, Chirik PJ, Roy AK, Lewis K, Nye S, Weller KJ, Delis JG. P, Yu R. US 20150080536, 2015
    • 10e Bedford RB. Acc. Chem. Res. 2015; 48: 1485
  • 11 Frank DJ, Guiet L, Käslin A, Murphy E, Thomas SP. RSC Adv. 2013; 3: 25698
  • 12 Bailly BA. F. L, Greenhalgh MD, Thomas SP. Chem. Commun. 2012; 48: 1580
  • 13 Carter TS, Guiet L, Frank DJ, West J, Thomas SP. Adv. Synth. Catal. 2013; 355: 880
  • 14 MacNair AJ, Tran M, Nelson JE, Sloan GU, Ironmonger A, Thomas SP. Org. Biomol. Chem. 2014; 12: 5082
  • 15 Greenhalgh MD, Thomas SP. J. Am. Chem. Soc. 2012; 134: 11900
  • 16 Jones AS, Paliga JF, Greenhalgh MD, Quibell JM, Steven A, Thomas SP. Org. Lett. 2014; 16: 5964
  • 17 Neate PG. N, Greenhalgh MD, Brennessel WW, Thomas SP, Neidig ML. J. Am. Chem. Soc. 2019; 141: 10099
    • 18a Greenhalgh MD, Thomas SP. Chem. Commun. 2013; 49: 11230
    • 18b Greenhalgh MD, Frank DJ, Thomas SP. Adv. Synth. Catal. 2014; 356: 584
  • 19 Challinor AJ, Calin M, Nichol GS, Carter NB, Thomas SP. Adv. Synth. Catal. 2016; 358: 2404
    • 20a Trzeciak AM, Ciunik Z, Ziolkowski JJ. Organometallics 2002; 21: 132
    • 20b Lu CC, Peters JC. J. Am. Chem. Soc. 2004; 126: 15818
  • 21 Docherty JH, Peng J, Dominey AP, Thomas SP. Nat. Chem. 2017; 9: 595

    • For examples of the use of alkoxides as additives in iron and cobalt catalysis, see:
    • 22a Mastalir M, Tomsu G, Pittenauer E, Allmaier G, Kirchner K. Org. Lett. 2016; 18: 3462
    • 22b Murugesan S, Stöger B, Carvalho MD, Ferreira LP, Pittenauer E, Allmaier G, Veiros LF, Kirchner K. Organometallics 2014; 33: 6132
    • 22c Deibl N, Kempe R. J. Am. Chem. Soc. 2016; 138: 10786
    • 22d Daw P, Chakraborty S, Leitus G, Diskin-Posner Y, Ben-David Y, Milstein D. ACS Catal. 2017; 7: 2500
  • 23 Peng J, Docherty JH, Dominey AP, Thomas SP. Chem. Commun. 2017; 53: 4726
  • 24 Carney JR, Dillon BR, Campbell L, Thomas SP. Angew. Chem. Int. Ed. 2018; 57: 10620

    • For selected recent examples, see:
    • 25a Singh A, Shafiei-Haghighi S, Smith CR, Unruh DK, Findlater M. Asian J. Org. Chem. 2020; 9: 416
    • 25b Das HS, Das S, Dey K, Singh B, Haridasan RK, Das A, Ahmed J, Mandal SK. Chem. Commun. 2019; 55: 11868
    • 25c Cheng B, Liu WB, Lu Z. J. Am. Chem. Soc. 2018; 140: 5014
    • 25d Wu J, Zeng HS, Cheng J, Zheng SP, Golen JA, Manke DR, Zhang GQ. J. Org. Chem. 2018; 83: 9442
    • 25e Zhang GQ, Wu J, Li SH, Cass S, Zheng SP. Org. Lett. 2018; 20: 7893
  • 26 MacNair AJ, Millet CR. P, Nichol GS, Ironmonger A, Thomas SP. ACS Catal. 2016; 6: 7217
    • 27a Noda D, Tahara A, Sunada Y, Nagashima H. J. Am. Chem. Soc. 2016; 138: 2480
    • 27b Sanagawa A, Nagashima H. Organometallics 2018; 17: 2859
    • 27c Schuster CH, Diao T, Pappas I, Chirik PJ. ACS Catal. 2016; 6: 2632
    • 27d Wu G, Chakraborty U, Jacobi von Wangelin A. Chem. Commun. 2018; 54: 12322
    • 27e Sang HL, Yu S, Ge S. Chem. Sci. 2018; 9: 973
  • 28 Du X, Zhang Y, Peng D, Huang Z. Angew. Chem. Int. Ed. 2016; 55: 6671
    • 29a Agahi R, Challinor AJ, Carter NB, Thomas SP. Org. Lett. 2019; 21: 993
    • 29b Agahi R, Challinor AJ, Dunne J, Docherty JH, Carter NB, Thomas SP. Chem. Sci. 2019; 10: 5079
    • 30a Peng, J.; Thomas, S. P. unpublished results.
    • 30b Peng J. Dissertation. The University of Edinburgh; UK: 2020