Synlett 2021; 32(04): 387-390
DOI: 10.1055/s-0040-1707246
cluster
Radicals – by Young Chinese Organic Chemists
© Georg Thieme Verlag Stuttgart · New York

Direct Deoxygenative Intramolecular Acylation of Biarylcarboxylic Acids

Yantao Li
a   State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. of China   Email: cjzhu@nju.edu.cn   Email: xie@nju.edu.cn
,
Wentao Xu
a   State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. of China   Email: cjzhu@nju.edu.cn   Email: xie@nju.edu.cn
,
Chengjian Zhu
a   State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. of China   Email: cjzhu@nju.edu.cn   Email: xie@nju.edu.cn
b   State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai 200032, P. R. of China
,
Jin Xie
a   State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. of China   Email: cjzhu@nju.edu.cn   Email: xie@nju.edu.cn
› Author Affiliations
We thank the National Natural Science Foundation of China (Grant Nos. 21971108, 21971111, 21702098, 21732003 and 21672099), the Natural Science Foundation of Jiangsu Province (Grant No. BK20190006), the Fundamental Research Funds for the Central Universities (Grant No. 020514380176), Jiangsu Six Peak Talent Project, and start-up funds from Nanjing University for financial support.
Further Information

Publication History

Received: 23 June 2020

Accepted after revision: 19 July 2020

Publication Date:
21 August 2020 (online)


Published as part of the Cluster Radicals – by Young Chinese Organic Chemists

Abstract

A photocatalyzed intramolecular cyclization is developed for the synthesis of fluorenones. In this photoredox reaction, triphenylphosphine is used as an inexpensive and effective deoxygenative reagent for biarylcarboxylic acids to give acyl radicals, which quickly undergo intramolecular radical cyclization. Reactions in the presence of air and continuous flow photoredox technology demonstrate the generality and practicality of this process.

Supporting Information

 
  • References

    • 1a Krueger RF. M, Gerald D. Science 1970; 169: 1213
    • 1b Uckert F, Tak Y.-H, Müllen K, Bässler H. Adv. Mater. 2000; 12: 905
    • 1c Qin C, Islam A, Han L. J. Mater. Chem. 2012; 22: 19236
    • 1d Gao H, Wang S, Qi Y, He G, Qiang B, Wang S, Zhang H. Bioorg. Med. Chem. Lett. 2019; 29: 126724
    • 1e Patel A, Shaikh M, Chikhalia K. Tetrahedron 2019; 75: 236
  • 2 Davidsen JM, Bartley DM, Townsend CA. J. Am. Chem. Soc. 2013; 135: 1749
    • 3a Gore PH. Chem. Rev. 1955; 55: 229
    • 3b Wade LG. Jr, Acker KJ, Earl RA, Osteryoung RA. J. Org. Chem. 1979; 44: 3724
    • 3c Shabashov D, Maldonado JR. M, Daugulis O. J. Org. Chem. 2008; 73: 7818
    • 3d Motiwala HF, Vekariya RH, Aube J. Org. Lett. 2015; 17: 5484
    • 4a Seo S, Slater M, Greaney MF. Org. Lett. 2012; 51: 2650
    • 4b Shi Z, Glorius F. Chem. Sci. 2013; 4: 829
    • 4c Wertz S, Leifert D, Studer A. Org. Lett. 2013; 15: 928
    • 4d Laha JK, Jethava KP, Patel S, Patel KV. J. Org. Chem. 2017; 82: 76
    • 4e Laha JK, Patel KV, Dubey G, Jethava KP. Org. Biomol. Chem. 2017; 15: 2199
    • 4f Tang J, Zhao S, Wei Y, Quan Z, Huo C. Org. Biomol. Chem. 2017; 15: 1589
    • 5a Atienza C, Mateo C, de Frutos Ó, Echavarren AM. Org. Lett. 2001; 3: 153
    • 5b Rodríguez D, Martínez-Esperón MF, Navarro-Vázquez A, Castedo L, Domínguez D, Saá C. J. Org. Chem. 2004; 69: 3842
    • 6a Bei X, Hagemeyer A, Volpe A, Saxton R, Turner H, Guram AS. J. Org. Chem. 2004; 69: 8626
    • 6b Catino AJ, Nichols JM, Choi H, Gottipamula S, Doyle MP. Org. Lett. 2005; 7: 5167
    • 6c Yang G, Zhang Q, Miao H, Tong X, Xu J. Org. Lett. 2005; 7: 263
    • 7a Campo MA, Larock RC. Org. Lett. 2000; 2: 3675
    • 7b Campo MA, Larock RC. J. Org. Chem. 2002; 67: 5616
    • 7c Liu L, Qiang J, Bai S, Li Y, Miao C, Li J. Appl. Organomet. Chem. 2017; 31: e3817
    • 7d Konishi H, Futamata S, Wang X, Manabe K. Adv. Synth. Catal. 2018; 360: 1805
    • 7e Wei B, Zhang D, Chen YH, Lei A, Knochel P. Angew. Chem. Int. Ed. 2019; 58: 15631
    • 8a Banerjee A, Lei Z, Ngai M.-Y. Synthesis 2019; 51: 303
    • 8b Ruan L, Chen C, Zhang X, Sun J. Chin. J. Org. Chem. 2018; 38: 3155
    • 8c Raviola C, Protti S, Ravelli D, Fagnoni M. Green Chem. 2019; 21: 748
  • 9 Fukuyama T, Maetani S, Miyagawa K, Ryu I. Org. Lett. 2014; 16: 3216
    • 10a Shaw MH, Twilton J, MacMillan DW. C. J. Org. Chem. 2016; 81: 6898
    • 10b Twilton J, Le C, Zhang P, Shaw MH, Evans RW, MacMillan DW. C. Nat. Rev. Chem. 2017; 1: 0052 ; DOI: 10.1038/s41570-017-0052
    • 10c Xu W, Ma J, Yuan XA, Dai J, Xie J, Zhu C. Angew. Chem. Int. Ed. 2018; 57: 10357
    • 10d Zhou N, Yuan XA, Zhao Y, Xie J, Zhu C. Angew. Chem. Int. Ed. 2018; 57: 3990
    • 10e Xu W, Wang W, Liu T, Xie J, Zhu C. Nat. Commun. 2019; 10: 4867
    • 10f Xie J, Li J, Wurn T, Weingand V, Sung H.-L, Rominger F, Rudolph M, Hashmi AS. K. Org. Chem. Front. 2016; 3: 841
    • 10g Wei Y, Zhou Q, Tan F, Lu L, Xiao W. Synthesis 2019; 51: 3021
    • 10h Ma J, Xu W, Xie J. Sci. China Chem. 2020; 63: 187
    • 10i Zhu C, Dong J, Liu X, Gao L, Zhao Y, Xie J, Li S, Zhu C. Angew. Chem. Int. Ed. 2020; 59: 12817
    • 10j Yu X.-Y, Chen J.-R, Xiao W.-J. Chem. Rev. 2020; DOI: in press; 10.1021/acs.chemrev.0c00030.
  • 11 Ruzi R, Zhang M, Ablajan K, Zhu C. J. Org. Chem. 2017; 82: 12834
    • 12a Zhang M, Xie J, Zhu C. Nat. Commun. 2018; 9: 3517
    • 12b Zhang M, Yuan XA, Zhu C, Xie J. Angew. Chem. Int. Ed. 2019; 58: 312
    • 12c Ruzi R, Liu K, Zhu C, Xie J. Nat. Commun. 2020; 11: 3312
    • 12d Ruzi R, Ma J, Yuan X.-A, Wang W, Wang S, Zhang M, Dai J, Xie J, Zhu C. Chem. Eur. J. 2019; 25: 12724
    • 13a Stache EE, Ertel AB, Rovis T, Doyle AG. ACS Catal. 2018; 8: 11134
    • 13b Martinez Alvarado JI, Ertel AB, Stegner A, Stache EE, Doyle AG. Org. Lett. 2019; 21: 9940
    • 14a Jiang H, Mao G, Wu H, An Q, Zuo M, Guo W, Xu C, Sun Z, Chu W. Green Chem. 2019; 21: 5368
    • 14b Mao R, Bera S, Cheseaux A, Hu X. Chem. Sci. 2019; 10: 9555
    • 14c Zhang L, Si X, Yang Y, Witzel S, Sekine K, Rudolph M, Rominger F, Hashmi AS. K. ACS Catal. 2019; 9: 6118
    • 14d Xia P, Ye Z, Hu Y, Song D, Xiang H, Chen X, Yang H. Org. Lett. 2019; 21: 2658
  • 15 Day JI, Teegardin K, Weaver J, Chan J. Org. Process Res. Dev. 2016; 20: 1156
  • 16 Fluorenones 2a–o; General Procedure Biarylcarboxylic acid 1 (0.1 mmol), Ir[dF(CF3)ppy]2(dtbbpy)PF6 (2.3 mg, 0.02 mmol), Ph3P (78.6 mg, 0.3 mmol), K2CO3 (10.4 mg, 0.075 mmol) and DCE (2 mL) were added to a 10 mL Schlenk tube equipped with a magnetic stir bar. The tube was placed at a distance of ~5 cm from 2 blue LEDs (45 W) under air, and the resulting solution was stirred for 24 h. After the reaction was complete (monitored by TLC), the mixture was concentrated under vacuum to remove DCE and the residue was purified by silica gel column chromatography (hexane/EtOAc = 20:1 to 5:1) to afford the product 2. 9H-Fluoren-9-one (2a) Compound 2a (12.6 mg, 70%) was synthesized using the general procedure and isolated as a yellow solid; mp 81–82 °C. 1H NMR (500 MHz, CDCl3): δ = 7.66 (d, J = 7.3 Hz, 2 H), 7.53–7.47 (m, 4 H), 7.29 (td, J = 7.3, 1.2 Hz, 2 H). MS (EI): m/z (%) = 180.0 (100) [M+]. 2-Methyl-9H-fluoren-9-one (2b) Compound 2b (14 mg, 72%) was synthesized using the general procedure and isolated as a yellow solid; mp 90–91 °C. 1H NMR (500 MHz, CDCl3): δ = 7.63 (d, J = 7.3 Hz, 1 H), 7.47–7.44 (m, 3 H), 7.39 (d, J = 7.5 Hz, 1 H), 7.29–7.23 (m, 2 H), 2.37 (s, 3 H). MS (EI): m/z (%) = 194.1 (100) [M+].
  • 17 Rehm T. Chem. Eur. J. 2020; DOI: 2000381, 10.1002/chem.202000381.
  • 18 Flow Chemistry; General Procedure Biarylcarboxylic acid 1a (198 mg, 1 mmol), PPh3 (786 mg, 3 mmol), K2CO3 (69 mg, 0.5 mmol, 120 mesh), and Ir[dF(CF3)ppy]2(dtbbpy)PF6 (11.7 mg, 0.01 mmol) were placed in a round-bottom flask (100 mL). DCE (30 mL) was added under air and the mixture was pumped at a rate of 82 mL min–1 using a peristaltic pump under irradiation with 2 blue LEDs (45 W). After 8.5 h, the reaction was complete. The mixture was concentrated under vacuum to remove DCE and the residue was purified by silica gel column chromatography (hexane/EtOAc = 20:1 to 5:1) to afford the product 2a.